
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 6.4-6.5

Synchronization Tools: test_and_set()

Peterson’s Solution
for a 2-process case

int turn;

boolean flag[2];

do {

flag[i] = TRUE; // i 0 or 1

turn = j; // j 0 or 1

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Shared

variables

turn: status

flag[2]: intension

Peterson’s Solution
Process 0

do {

flag[0] = TRUE;

turn = 1;

while (flag[1] && turn == 1);

critical section

flag[0] = FALSE;

remainder section

} while (TRUE);

Shared

variables

int turn;

boolean flag[2];

turn: status

flag[2]: intension

Peterson’s Solution
Process 1

do {

flag[1] = TRUE;

turn = 0;

while (flag[0] && turn == 0);

critical section

flag[1] = FALSE;

remainder section

} while (TRUE);

Shared

variables

turn: status

flag[2]: intension

int turn;

boolean flag[2];

Limitation to Peterson’s Solution

• Strict order of execution

• Variable updates (turn and flag) could
still be problematic

Where Are the Sources of the Problem?

The root cause of the problem is that we are unable to
control which part of the code can be executed in parallel,
which part can only be executed in sequence.

For example, the instructions that update the value of a
shared variable should only be allowed to execute in
sequence.

We’ll look at some solutions in this segment.

Using Locks
hardware or software

7

do {

acquire_lock

critical section

release_lock

remainder section

} while (TRUE);

Key: the operations acquire_lock and release_lock are atomic, i.e., they either complete or do nothing.

8

Synchronization Hardware

• Many systems provide hardware support for critical
section code.

• Uniprocessors (could disable interrupts):
– Currently running code would execute without preemption.
– Generally too inefficient on multiprocessor systems.
– Operating systems using this not broadly scalable.

• Modern machines provide special atomic hardware
instructions (dedicated instructions) :
– Test memory word and set value.
– Swap the contents of two memory words.

Lock with test_and_set

9

boolean lock = FALSE; // try to unlock

do {

while (test_and_set(&lock))

; //wait on TRUE

critical section // lock is FALSE, our turn

lock = FALSE; // release the lock

remainder section

} while (TRUE);

The process which wants to get into CR attempts to set lock = FALSE (unlock)
If the lock was TRUE, then test_and_set() returns TRUE, the requesting process
will be busy waiting, until the lock becomes FALSE before entering CR.

Atomic test_and_set

boolean test_and_set(boolean *target) {

boolean ret_val = *target;

*target = TRUE;

return ret_val;

}

The above operations must be completed without interrupt, thus atomic.
Only the very first process can get through this by getting a False return
value. All subsequence processes will see True until the process in CR sets
it to False.

When Multiple Processes Do the Same …

Only one will get through the while loop, i.e., when lock == False

test_and_set()

p1
lock = False

CR code

lock == False
Set lock True

test_and_set()

p0
lock = False

lock == True
Keep in while loop

lock == True
Keep in while loop

test_and_set()

pn
lock = False

lock == True
Keep in while loop

Set lock = False so another process can proceed

atomic

Lock with compare_and_swap
int lock = 0; // try to unlock

do {

while(compare_and_swap(&lock,0,1) != 0)

; // wait

critical section

lock = 0; // release the lock

remainder section

} while (TRUE);

Atomic compare_and_swap

void compare_and_swap (int *cur_value,

int expected, int new_value) {

int temp = *cur_value; // current lock value

if (*cur_value == expected) // we can lock

*cur_value = new_value;

return temp;

}

The above operations must be completed without interrupt, thus atomic.

How Are We Meeting
The Requirements?

Do the solutions above provide:

1. Mutual exclusion?

2. Progress?

3. Bounded waiting?

Try out an example:
http://www.eg.bucknell.edu/~cs315/F2021/meng/code/locks/gnu_locks.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/locks/gnu_locks.c

