
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 6.6

Synchronization Tools: semaphores

Issue With the Lock Solution

• While locks (and other hardware-based solutions we
discussed in last segment) do well to ensure the
exclusive access to shared data, the solution is
simplistic.

– It may result in “busy waiting,” not a good use of
resources.

– It is possible that the waiting time is not bounded
as we cannot control the order with locks.

• Semaphore – an abstract data type consisting of two parts, a counter
and a queue, working together to provide atomic operations

• Counting semaphore – the counter value is unlimited

• Binary semaphore – the counter can only be 0 or 1; it can be simpler to
implement (also known as mutex locks).

• Provides mutual exclusion:

Semaphores

semaphore S(1); // initialized to 1

wait(S); // or acquire(S) or P(S)

criticalSection();

signal(S); // or release(S) or V(P)

Semaphore Implementation

typedef struct {

int value;

struct process_t *list;

} semaphore;

It looks like a normal C variable, except that operations on
semaphores are atomic, just like what we saw in test_and_set()
and compare_and_swap() to ensure the integrity of the value.

Semaphore Implementation
wait(semaphore *S) { // try to enter

S->value--;

if (S->value < 0) { // others in CR

add the process to S->list;

sleep(); // or wait()

}

}

signal(semaphore *S) { // leave
S->value++;
if (S->value <= 0) { // others waiting

remove a process P from S->list;
wakeup(P); // or signal()

}
}

Here wait() is also known as the P
operation, and signal() as V. These are
Dutch words were given by Dijkstra, a
world-renowned Dutch-native computer
scientist, who invented the notion.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

These two operations
have to be atomic!

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

The Bounded-Buffer Problem
int n;

mutex access;

semaphore empty;

semaphore full;

init(&access,1);

init(&empty,n);// wait for space

init(&full,0); // wait for item

producer consumershared buffer
capacity n items

access

Binary
semaphore

Counting
semaphore

Why do we initialize access to be 1?
Why empty be n?
Why full be zero?

do {// produce item and save

wait(&empty);

wait(&access);

// add item and save

signal(&access);

signal(&full);

} while (true);

The Bounded-Buffer Problem

producer consumerbuffer

Producer

do {// produce item and save

wait(&empty);

wait(&access);

// add item and save

signal(&access);

signal(&full);

} while (true);

The Bounded-Buffer Problem

producer consumerbuffer

critical
section

The Bounded-Buffer Problem

producer consumerbuffer

Consumer

do {

wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);

The Bounded-Buffer Problem

do {

wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);

producer consumerbuffer

Critical
Section

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well,
that is almost always true). We should want a solution that reduces the risk.

• The monitor is one such data type:

A procedure can access only local

variables defined within the monitor.

There cannot be concurrent access to

procedures within the monitor (only one

process/thread can be active in the

monitor at any given time).

Condition variables: queues are

associated with variables. Primitives for
synchronization are wait and signal.

monitor mName {

// declare shared variables

procedure P1 (…) {

…

}

procedure Pn (…) {

…

}

init code (…) {

….

}

}

Monitor

