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Ch 6.6

Synchronization Tools: semaphores



Issue With the Lock Solution

• While locks (and other hardware-based solutions we 
discussed in last segment) do well to ensure the 
exclusive access to shared data, the solution is 
simplistic.

– It may result in “busy waiting,” not a good use of 
resources.

– It is possible that the waiting time is not bounded 
as we cannot control the order with locks.



• Semaphore – an abstract data type consisting of two parts, a counter 
and a queue, working together to provide atomic operations

• Counting semaphore – the counter value is unlimited

• Binary semaphore – the counter can only be 0 or 1; it can be simpler to 
implement (also known as mutex locks).

• Provides mutual exclusion:

Semaphores

semaphore S(1);  // initialized to 1

wait(S);           // or acquire(S) or P(S)

criticalSection();

signal(S);        // or release(S) or V(P)



Semaphore Implementation

typedef struct {

int value;

struct process_t *list;

} semaphore;

It looks like a normal C variable, except that operations on 
semaphores are atomic, just like what we saw in test_and_set() 
and compare_and_swap() to ensure the integrity of the value.



Semaphore Implementation
wait(semaphore *S) { // try to enter

S->value--;

if (S->value < 0) { // others in CR

add the process to S->list;

sleep();    // or wait()

}

}

signal(semaphore *S) { // leave
S->value++;
if (S->value <= 0) { // others waiting

remove a process P from S->list;
wakeup(P);  // or signal()

}
}

Here wait() is also known as the P
operation, and signal() as V. These are 
Dutch words were given by Dijkstra, a 
world-renowned Dutch-native computer 
scientist, who invented the notion. 

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

These two operations 
have to be atomic!

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names


The Bounded-Buffer Problem
int n;

mutex access;

semaphore empty;

semaphore full;

init(&access,1);

init(&empty,n);// wait for space

init(&full,0); // wait for item

producer consumershared buffer
capacity n items

access

Binary 
semaphore

Counting 
semaphore

Why do we initialize access to be 1?
Why empty be n?
Why full be zero?



do {// produce item and save

wait(&empty);

wait(&access);

// add item and save

signal(&access);

signal(&full);

} while (true);

The Bounded-Buffer Problem

producer consumerbuffer

Producer



do {// produce item and save

wait(&empty);

wait(&access);

// add item and save

signal(&access);

signal(&full);

} while (true);

The Bounded-Buffer Problem

producer consumerbuffer

critical 
section



The Bounded-Buffer Problem

producer consumerbuffer

Consumer

do {  

wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);



The Bounded-Buffer Problem

do {  

wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);

producer consumerbuffer

Critical 
Section



Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, 
that is almost always true). We should want a solution that reduces the risk.

• The monitor is one such data type:

A procedure can access only local 

variables defined within the monitor.

There cannot be concurrent access to 

procedures within the monitor (only one 

process/thread can be active in the 

monitor at any given time). 

Condition variables: queues are 

associated with variables. Primitives for 
synchronization are wait and signal.

monitor mName {

// declare shared variables 

procedure P1 (…) {

…

}

procedure Pn (…) {

…

}

init code (…) {

….

}

}



Monitor


