
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 6.6

Synchronization Example: Dinning Philosophers

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an event that can be
caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1. The processes P0 and P1 are likely
deadlocked.

P0 P1

acquire(S); acquire(Q);

acquire(Q); acquire(S);

. .

. .

. .

release(S); release(Q);

release(Q); release(S);

• Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended. E.g., the process in the CR goes into an
infinite loop …

The Dining-Philosophers
Problem

N philosophers sit with N
chopsticks. Anyone who wants
to eat will need both
chopsticks. They can only grab
one chopstick at a time.

If one is able to get both
chopsticks, they will eat.
Otherwise, they wait for the
chopsticks, or they are in a
thinking state (idle).

The Dining-Philosophers
Problem

thinking

hungry eating

State diagram for a philosopher.

We will use the colors to indicate

the state of a philosopher.

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

Limit to Concurrency

What is the maximum number

of philosophers that can be
eating at any point in time?

Philosopher’s Behavior

• Grab chopstick on left

• Grab chopstick on right

• Eat

• Put down chopstick on right

• Put down chopstick on left

How well does this work?

The Dining-Philosophers
Problem

The Dining-Philosophers
Problem

Question: How many philosophers can eat at once? How

can we generalize this answer for n philosophers and n
chopsticks?

Question: What happens if the programmer initializes the

semaphores incorrectly? (Say, two semaphores start out a
zero instead of one.)

Question: How can we formulate a solution to the problem
so that there is no deadlock or starvation?

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well,
that is almost always true). We should want a solution that reduces the risk.

• The monitor is one such data type:

A procedure can access only local

variables defined within the monitor.

There cannot be concurrent access to

procedures within the monitor (only one

process/thread can be active in the

monitor at any given time).

Condition variables: queues are

associated with variables. Primitives for
synchronization are wait and signal.

monitor mName {

// declare shared variables

procedure P1 (…) {

…

}

procedure Pn (…) {

…

}

init code (…) {

….

}

}

Monitor

Conditional Variables

• Monitors provide a high level structure that
the programmers don’t need to worry about
the details.

• However a monitor contains many pieces, e.g.,
procedures and variables, the monitor
implementations do have to take care of the
synchronizations.

Conditional Variables

• Conditional variables are a structure inside the
monitor to provide such a mechanism.

• The only two operations allowed on a conditional
variables is wait() and signal().

• They look similar to the operations on semaphore.
But usually “signal-and-continue” is a better
option in monitor.

• We can use semaphore to implement a monitor.

Fig 7.7 - monitor solution
monitor DiningPhilosophers {

enum {THINKING, HUNGRY, EATING} state [5] ;
condition self [5]; // conditional variable

void pickup (int i) {
state[i] = HUNGRY;
test(i); // see test() on next page
if (state[i] != EATING)

self[i].wait();
} // end of pickup()

void putdown (int i) {
state[i] = THINKING;
test((i + 4) % 5); // signal left and right
test((i + 1) % 5);

} // end of putdown()

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

} // end of test()

void initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

} // end of initialization()

} // end of monitor()

The Testing Logic for the Monitor Solution
#define NUM_PHIL 5 // some random ints

monitor DiningPhilosophers people[NUM_PHIL];

for (i = 0; i < NUM_PHIL; i ++) {
pthread_create(tid[i], NULL, phil_routine, &i);

}

void *phil_routine(void *argv) {
int i = (*(int *)argv);
do {

people.pickup(i);
…
eat(i);
…
people.putdown(i);
// some delay

} while (1);

}

Sleeping Barber

https://images.app.goo.gl/HDrPq9ePwpJPS2NM7

https://images.app.goo.gl/HDrPq9ePwpJPS2NM7
https://images.app.goo.gl/HDrPq9ePwpJPS2NM7

