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Ch 6.6

Synchronization Example: Dinning Philosophers



Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an event that can be 
caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1. The processes P0 and P1 are likely 
deadlocked.

P0 P1

acquire(S); acquire(Q);

acquire(Q); acquire(S);

. .

. .

. .

release(S); release(Q);

release(Q); release(S);

• Starvation – indefinite blocking.  A process may never be removed from the 
semaphore queue in which it is suspended. E.g., the process in the CR goes into an 
infinite loop …



The Dining-Philosophers 
Problem

N philosophers sit with N 
chopsticks. Anyone who wants 
to eat will need both 
chopsticks. They can only grab 
one chopstick at a time.

If one is able to get both 
chopsticks, they will eat. 
Otherwise, they wait for the 
chopsticks, or they are in a 
thinking state (idle).



The Dining-Philosophers 
Problem

thinking

hungry eating

State diagram for a philosopher.

We will use the colors to indicate 

the state of a philosopher.
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Limit to Concurrency

What is the maximum number 

of philosophers that can be 
eating at any point in time? 



Philosopher’s Behavior

• Grab chopstick on left

• Grab chopstick on right

• Eat

• Put down chopstick on right

• Put down chopstick on left

How well does this work?
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The Dining-Philosophers 
Problem

Question: How many philosophers can eat at once? How 

can we generalize this answer for n philosophers and n
chopsticks?

Question: What happens if the programmer initializes the 

semaphores incorrectly? (Say, two semaphores start out a 
zero instead of one.)

Question: How can we formulate a solution to the problem 
so that there is no deadlock or starvation?



Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, 
that is almost always true). We should want a solution that reduces the risk.

• The monitor is one such data type:

A procedure can access only local 

variables defined within the monitor.

There cannot be concurrent access to 

procedures within the monitor (only one 

process/thread can be active in the 

monitor at any given time). 

Condition variables: queues are 

associated with variables. Primitives for 
synchronization are wait and signal.

monitor mName {

// declare shared variables 

procedure P1 (…) {

…

}

procedure Pn (…) {

…

}

init code (…) {

….

}

}



Monitor



Conditional Variables

• Monitors provide a high level structure that 
the programmers don’t need to worry about 
the details.

• However a monitor contains many pieces, e.g., 
procedures and variables, the monitor 
implementations do have to take care of the 
synchronizations.



Conditional Variables

• Conditional variables are a structure inside the 
monitor to provide such a mechanism.

• The only two operations allowed on a conditional 
variables is wait() and signal().

• They look similar to the operations on semaphore. 
But usually “signal-and-continue” is a better 
option in monitor.

• We can use semaphore to implement a monitor.



Fig 7.7 - monitor solution
monitor DiningPhilosophers { 

enum {THINKING, HUNGRY, EATING} state [5] ;
condition self [5];  // conditional variable

void pickup (int i) { 
state[i] = HUNGRY;
test(i);  // see test() on next page
if (state[i] != EATING) 

self[i].wait();
}   // end of pickup()

void putdown (int i) { 
state[i] = THINKING;
test((i + 4) % 5);     // signal left and right
test((i + 1) % 5);     

}   // end of putdown()

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}    // end of test()

void initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}    // end of initialization()

}    // end of monitor()



The Testing Logic for the Monitor Solution
#define NUM_PHIL 5  // some random ints

monitor DiningPhilosophers people[NUM_PHIL];

for (i = 0; i < NUM_PHIL; i ++) {
pthread_create(tid[i], NULL, phil_routine, &i);

}

void *phil_routine(void *argv) {
int i = (*(int *)argv);
do {

people.pickup(i);
…
eat(i);
…
people.putdown(i);
// some delay

} while (1);

}



Sleeping Barber
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