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Ch 5.1-5.2

Introduction to CPU Scheduling



What is CPU scheduling?

• CPU scheduling is a mechanism by the operating 
system to manage processes1 to maximize CPU 
utilization and to minimize user waiting time.

• The goals of scheduling may be in conflict, e.g., CPU 
utilization and user waiting time. Comprises may be 
needed.

• CPU scheduling involves algorithm, implementation, 
and evaluation criteria.

1. Again, here we use processes, threads, or tasks interchangeably.



Why CPU scheduling?

• There are many processes active at any moment on a 
computer. The operating system has to decide to 
which process to assign CPU, for how long, and how 
to arrange competing processes.

• Try the “top” command at the Linux command line. 
(See next slide.)



Example of showing live processes
407 live 
processes

1 running, 
406 
sleeping

Linux 
command 
showing 
this result
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Questions:

• When does a process start competing for the CPU?

• How is the queue of ready processes organized?

• How much time does the system allow a process to use the CPU?

• Does the system allow for priorities and preemption?

• What does it mean to maximize the system’s performance?



Basic Concepts

• You want to maximize CPU utilization through the use of 
multiprogramming.
– utilization: percentage of time the CPU is busy
– multiprogramming: allowing multiple processes to be 

live in the system at the same time

• Each process repeatedly goes through cycles that alternate 
CPU execution (a CPU burst) and I/O wait (an I/O wait). 
– See the notes on process life cycle in Chapter 3

• Empirical evidence indicates that CPU-burst lengths have a 
distribution such that there is a large number of short 
bursts and a small number of long bursts.



Alternating Sequence of 
CPU And I/O Bursts

Sequence of 
instructions of a 
sample process.



Histogram of CPU-burst Times

This diagram indicates 
that this process has 
large number of small 
CPU bursts of length 
less than 8 ms, 
relatively few long 
CPU bursts that are 
greater than 8 ms.



CPU Scheduler

• A.K.A. short-term scheduler.

• Selects from among the processes in memory that are 
ready to execute, and allocates the CPU to one of them.

• CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state (e.g., request I/O)

2. Switches from running to ready state (e.g., time slice expires)

3. Switches from waiting to ready (e.g., completed I/O)

4. Terminates.

Question: Where does the system keep the processes that are ready to execute?



Preemptive Scheduling

• In cooperative or non-preemptive scheduling, when taking 
over the CPU, the process keeps it until the process either 
enters waiting state or terminates.

• In preemptive scheduling, a process holding the CPU may 
be forced to give up the CPU. Preemption causes context-
switches, which introduce overhead. Preemption also calls 
for care of data shared with another process or kernel data 
structures when a process loses the CPU.



Dispatcher

• The dispatcher module in OS gives control of the CPU 
to the process selected by the short-term scheduler; 
this involves:
– switching context,

– switching to user mode,

– jumping to the proper location in the selected process to 
restart that program.

• The dispatch latency is the time it takes for the 
dispatcher to stop one process and start another.



I/O cmplt, intrpt

init
start shell program for user
…
interrupt handler
read myprog from disk
start myprog on cpu
…

interrupt handler
suspend myprog, do i/o
interrupt handler
resume myprog

How Do They Work Together?
--- A Big Picture

Time line User actions

[user@me]$ myprog <ret> 

jump start
load t1, a
load s2, b
add x7, t1, s2
print stdout x7

sub s2, 1
store s2, x
store t1, y

OS actions

interrupt!

I/O trap!

User logs in the system

myprog taken
off CPU



Scheduling Criteria
These are performance metrics such as:

• CPU utilization – percentage of time the CPU is busy

• Throughput – the number of processes that complete their execution 
per time unit.

• Turnaround time – amount of time to complete a particular process, 
including waiting and execution.

• Waiting time – amount of time a process has been waiting in the 
ready queue.

• Response time – amount of time it takes from when a request was 
submitted until the first response is received, not output  (for time-
sharing environment).

These metrics may conflict with each other. It makes sense to look at 
averages of these metrics.



Optimizing Performance

• Maximize CPU utilization.

• Maximize throughput.

• Minimize turnaround time. 

• Minimize waiting time. 

• Minimize response time.


