
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 5.1-5.2

Introduction to CPU Scheduling

What is CPU scheduling?

• CPU scheduling is a mechanism by the operating
system to manage processes1 to maximize CPU
utilization and to minimize user waiting time.

• The goals of scheduling may be in conflict, e.g., CPU
utilization and user waiting time. Comprises may be
needed.

• CPU scheduling involves algorithm, implementation,
and evaluation criteria.

1. Again, here we use processes, threads, or tasks interchangeably.

Why CPU scheduling?

• There are many processes active at any moment on a
computer. The operating system has to decide to
which process to assign CPU, for how long, and how
to arrange competing processes.

• Try the “top” command at the Linux command line.
(See next slide.)

Example of showing live processes
407 live
processes

1 running,
406
sleeping

Linux
command
showing
this result

Basic Concepts
P0

P1

P3

P4

CPUP2

Basic Concepts
P0

P1

P3

P4

CPUP2

Basic Concepts
P0

P1

P3

P4

CPUP2

Basic Concepts
P0

P1 P3

P4

CPUP2

Basic Concepts
P0

P1 P3P4 CPUP2

Basic Concepts

P0
P1 P3P4 CPUP2

Questions:

• When does a process start competing for the CPU?

• How is the queue of ready processes organized?

• How much time does the system allow a process to use the CPU?

• Does the system allow for priorities and preemption?

• What does it mean to maximize the system’s performance?

Basic Concepts

• You want to maximize CPU utilization through the use of
multiprogramming.
– utilization: percentage of time the CPU is busy
– multiprogramming: allowing multiple processes to be

live in the system at the same time

• Each process repeatedly goes through cycles that alternate
CPU execution (a CPU burst) and I/O wait (an I/O wait).
– See the notes on process life cycle in Chapter 3

• Empirical evidence indicates that CPU-burst lengths have a
distribution such that there is a large number of short
bursts and a small number of long bursts.

Alternating Sequence of
CPU And I/O Bursts

Sequence of
instructions of a
sample process.

Histogram of CPU-burst Times

This diagram indicates
that this process has
large number of small
CPU bursts of length
less than 8 ms,
relatively few long
CPU bursts that are
greater than 8 ms.

CPU Scheduler

• A.K.A. short-term scheduler.

• Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

• CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state (e.g., request I/O)

2. Switches from running to ready state (e.g., time slice expires)

3. Switches from waiting to ready (e.g., completed I/O)

4. Terminates.

Question: Where does the system keep the processes that are ready to execute?

Preemptive Scheduling

• In cooperative or non-preemptive scheduling, when taking
over the CPU, the process keeps it until the process either
enters waiting state or terminates.

• In preemptive scheduling, a process holding the CPU may
be forced to give up the CPU. Preemption causes context-
switches, which introduce overhead. Preemption also calls
for care of data shared with another process or kernel data
structures when a process loses the CPU.

Dispatcher

• The dispatcher module in OS gives control of the CPU
to the process selected by the short-term scheduler;
this involves:
– switching context,

– switching to user mode,

– jumping to the proper location in the selected process to
restart that program.

• The dispatch latency is the time it takes for the
dispatcher to stop one process and start another.

I/O cmplt, intrpt

init
start shell program for user
…
interrupt handler
read myprog from disk
start myprog on cpu
…

interrupt handler
suspend myprog, do i/o
interrupt handler
resume myprog

How Do They Work Together?
--- A Big Picture

Time line User actions

[user@me]$ myprog <ret>

jump start
load t1, a
load s2, b
add x7, t1, s2
print stdout x7

sub s2, 1
store s2, x
store t1, y

OS actions

interrupt!

I/O trap!

User logs in the system

myprog taken
off CPU

Scheduling Criteria
These are performance metrics such as:

• CPU utilization – percentage of time the CPU is busy

• Throughput – the number of processes that complete their execution
per time unit.

• Turnaround time – amount of time to complete a particular process,
including waiting and execution.

• Waiting time – amount of time a process has been waiting in the
ready queue.

• Response time – amount of time it takes from when a request was
submitted until the first response is received, not output (for time-
sharing environment).

These metrics may conflict with each other. It makes sense to look at
averages of these metrics.

Optimizing Performance

• Maximize CPU utilization.

• Maximize throughput.

• Minimize turnaround time.

• Minimize waiting time.

• Minimize response time.

