
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 5.3

CPU Scheduling Algorithms
FCFS, SJF, Priority

CPU Scheduling Algorithms

• In last segment, we discussed the basic idea of CPU
scheduling.

• We’d like to arrange the execution of processes to gain the
best performance.
– maximum throughput, utilization
– minimum waiting time, turn-around time, response time …

• In this segment, we will look at some algorithms aiming to
achieve these goals.

• In these studies, we ignore the other cost such as context
switching, just concentrate on CPU time.

First-Come, First-Served (FCFS)

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Issues with FCFS
Suppose that the processes arrive in the order

P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case.

• Convoy effect: all process are stuck waiting until a long process
terminates.

P1P3P2

63 300

Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with the
shortest time.

• Two schemes:
– Non-preemptive – once CPU given to a process it cannot be preempted

until completing its CPU burst.

– Preemptive – if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time for a
given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Preemptive SJF
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next
CPU-Burst

• We can only estimate the length.

• This can be done by using the length of previous CPU bursts,
using exponential averaging:

1. 𝑡𝑛 = actual lenght of 𝑛𝑡ℎ CPU burst
2. 𝜏𝑛 = predicted value for the CPU burst at time 𝑛
3. 0 ≤ 𝛼 ≤ 1
4. The effect of the value of 𝛼?

𝜏𝑛+1 = 𝛼 𝑡𝑛 + 1 − 𝛼 𝜏𝑛

Prediction of the Length of the
Next CPU-Burst

The graph is shown when α is 0.5

Example

• Given the actual (measured) CPU bursts are 6, 4, 6, 4, 13,
13, 13, and the initial estimate of τ is 10 as in previous
slide, show the first three predictions when α takes the
value of
– 0.2

– 0.7

• When α is 0.2, estimates are 9.2, 8.16, 7.73

• When α is 0.7, estimates are 7.2, 4.96, 5.69

• See an example computation on next slide

Example Computation

𝜏𝑛+1 = 𝛼 𝑡𝑛 + 1 − 𝛼 𝜏𝑛

ti = 6, 4, 6, 4, 13, 13, 13 --- these are measured time
τ0 = 10, α = 0.2, t0 = 6
τ1 = 0.2*6 + 0.8*10 = 9.2
τ2 = 0.2*4 + 0.8*9.2 = 8.16
τ3 = 0.2*6 + 0.8*8.16 = 7.73

Priority Scheduling

• A priority number (integer) is associated with each process.

• The CPU is allocated to the process with the highest priority
(typically, smallest integer highest priority)

– Preemptive

– Non-preemptive

• SJF is a priority scheduling where priority is the predicted next
CPU-burst time.

• Problem: Starvation – low priority processes may never execute.

• Solution: Aging – as time progresses increase the priority of the
process.

Process Priority in Linux

• Priority scheduling is commonly used in production
OSes such as Linux

• In Linux, the priority values range from 1 (most
favorite) to 99 (least favorite)

• Try ps -l command on a Linux terminal

• Default priority of a user process is 80.

• We can run a CPU intensive job and use the nice
command to set its priority, or renice command to
change its priority. (Range of renice is 0 to 20.)

https://study.com/academy/lesson/process-priorities-in-linux-definition-modification.html

https://study.com/academy/lesson/process-priorities-in-linux-definition-modification.html

To check priority levels

Use Linux command chrt to check levels of priority.

default priority (80)

lower the
priority by 10

new priority (90)

try to lower it
by another 20

you can’t go
beyond 99, the
minimum

