
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook 
authors, as well as L. Felipe Perrone, Joshua Stough, 
and other instructors.
Xiannong Meng, Fall 2021.

Ch 5.5, 5.6

Multi-Processor Scheduling and 
Real-Time Scheduling



Multiple-Processor Scheduling

• CPU scheduling is more complex when multiple 
CPUs are available

• Multiprocessor may be any one of the following 
architectures:

– Multicore CPUs

– Multithreaded cores

– NUMA (Non-uniform memory access) systems

– Heterogeneous multiprocessing



• Symmetric multiprocessing (SMP) is where each 
processor is self scheduling.

• All threads may be in a common ready queue (a)

• Each processor may have its own private queue of 
threads (b)

• Queuing theory implications?

Multiple-Processor Scheduling



Multi-core Processor Architecture

https://www.drdobbs.com/development-and-optimization-techniques/212600040

https://www.drdobbs.com/development-and-optimization-techniques/212600040


Multicore Processors
• Recent trend to place multiple processor 

cores on same physical chip
• Faster and consumes less power
• Multiple threads per core also growing

– Takes advantage of memory stall to 
make progress on another thread while 
memory retrieve happens



Multithreaded Multicore 
System

• Each core has > 1 hardware threads. 

• If one thread has a memory stall, switch 
to another thread!



• Chip-multithreading
(CMT) assigns each core 
multiple hardware 
threads. (Intel refers to 
this as hyperthreading.)

• On a quad-core system 
with 2 hardware threads 
per core, the operating 
system sees 8 logical 
processors.

Multithreaded Multicore System



Multithreaded Multicore System

• Two levels of scheduling:

1. The operating system 
deciding which software 
thread to run on a logical 
CPU

2. How each core decides 
which hardware thread to 
run on the physical core.



Multiple-Processor Scheduling – Load 
Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly 
distributed

• Push migration – periodic task checks load on each 
processor, and if found pushes task from 
overloaded CPU to other CPUs

• Pull migration – idle processors pulls waiting task 
from busy processor



Multiple-Processor Scheduling –
Processor Affinity

• When a thread has been running on one processor, the 
cache contents of that processor stores the memory 
accesses by that thread.

• We refer to this as a thread having affinity for a processor 
(i.e., “processor affinity”)

• Load balancing may affect processor affinity as a thread 
may be moved from one processor to another to balance 
loads, yet that thread loses the contents of what it had in 
the cache of the processor it was moved off of.

• Soft affinity – the operating system attempts to keep a 
thread running on the same processor, but no guarantees.

• Hard affinity – allows a process to specify a set of 
processors it may run on.



NUMA and CPU Scheduling

If the operating system is NUMA-aware, it will 
assign memory closes to the CPU the thread is 
running on. 

NUMA: Non-uniform memory access (time)



Real-Time CPU Scheduling

• Can present obvious challenges

• Soft real-time systems – Critical real-
time tasks have the highest priority, but 
no guarantee as to when tasks will be 
scheduled

• Hard real-time systems – task must be 
serviced by its deadline



Real-Time CPU Scheduling

• Event latency – the amount of 
time that elapses from when an 
event occurs to when it is 
serviced.

• Two types of latencies affect 
performance
1. Interrupt latency – time 

from arrival of interrupt to 
start of routine that 
services interrupt

2. Dispatch latency – time for 
schedule to take current 
process off CPU and switch 
to another



Interrupt Latency

ISR: Interrupt service routine



Dispatch Latency
• Conflict phase of 

dispatch latency:

1. Preemption of 
any process 
running in kernel 
mode

2. Release by low-
priority process of 
resources needed 
by high-priority 
processes



Priority-based Scheduling

• For real-time scheduling, scheduler must support 
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to meet 
deadlines

• Processes have new characteristics: periodic ones 
require CPU at constant intervals
– processing time t, deadline d, period p
– 0 ≤ t ≤ d ≤ p
– Rate of periodic task is 1/p



Rate Monotonic Scheduling
• A priority is assigned based on the inverse of 

its period

• Shorter periods = higher priority

• Longer periods = lower priority

• P1 is assigned a higher priority than P2 when P1

has a shorter period.
Period(P1) = 50
Period(P2) = 100
t1 = 20, t2 = 30
d1 = 50, d2 = 80
Both meet deadlines



Missed Deadlines with Rate Monotonic 
Scheduling

• Process P2 misses finishing its deadline at time 
80, if we make t1 = 25 and t2 = 25.

• The figure illustrates the idea



Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to deadlines:
– The earlier the deadline, the higher the priority

– The later the deadline, the lower the priority

– No preemption

• The figure illustrates the idea, if we have

– d1 = 50 and d2 = 80, t1 = 25 and t2 = 35,

– Both will miss deadlines.



Proportional Share Scheduling

• T shares are allocated among all 
processes in the system

• An application receives N shares where 
N < T

• This ensures each application will receive 
N / T of the total processor time


