
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 8.1 – 8.3

Introduction to Deadlock

Potential Deadlock Example
/* thread one runs in this function */

void *do_work_one(void *param)

{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */

pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)

{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */

pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c

The code may not cause
deadlock if one thread
grabs both locks before the
other.

If both threads hold on the
one lock before trying
the second lock, a deadlock
will occur.

Why “potential”?

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c

Deadlock for Two Processes

P1 P2

mutex1 mutex2

P1 requests M2
while holding M1

P2 requests M1
while holding M2

Deadlock: Bridge Crossing Example

• Traffic only in one direction at a time.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

• Several cars may have to be backed up if a deadlock
occurs.

Deadlock: Dining-Philosophers Example
All philosophers start out hungry and that they
all pick up their left chopstick at the same
time.

When a philosopher manages to get a
chopstick, it is not released until a second
chopstick is acquired and the philosopher has
eaten his share.

Question: Why did deadlock happen?
Enumerate all the conditions that have to be
satisfied for deadlock to occur.

Question: What can be done to guarantee that
deadlock won’t happen?

Traffic Deadlock

Concepts to discuss

Deadlock

Livelock

Spinlock vs. Blocking

A System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a
resource.

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes.

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously:

Resource Allocation Graph

• The nodes in V can be of two types (partitions):
– P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system.

• Request edge – directed edge P1 → Rj

• Assignment edge – directed edge Rj→ Pi

Graph: G=(V,E)

Resource Allocation Graph
• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Example of a Resource Allocation
Graph

Resource Allocation Graph With A
Deadlock

Resource Allocation Graph With A
Cycle But No Deadlock

Resource Allocation Graph
Example 1

Resource Allocation Graph
Example 2

Basic Facts

• If graph contains no cycles no
deadlock.

• If graph contains a cycle

– if only one instance per resource type,
then deadlock.

– if several instances per resource type,
possibility of deadlock.

