CSCI315 — Operating Systems Design
Department of Computer Science
Bucknell University

Introduction to Deadlock

Ch8.1-8.3

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.

Xiannong Meng, Fall 2021.

Potential Deadlock Example

/* thread one runs in this function */

void *do work one(void *param)

(Why “potential”?

pthread mutex lock (&first mutex) ;

pthread mutex lock (&second mutex) ;

/** * Do some work */

pthread mutex unlock (&second mutex) ;

pthread mutex unlock (&first mutex) ; The COde .may nOt Cause
pthread exit (0); deadlock if one thread
} grabs both locks before the

/* thread two runs in this function */

void *do work two (void *param) Other.
{

pthread mutex lock (&second mutex) ;

pthread mutex lock (&first mutex) ; If bOth th reads hOId on the
T DTSR Y one lock before trying

pthread mutex unlock (&first mutex);

pthread mutex_unlock (&second mutex) ; the second IOCk, a deadlock
pthread exit (0); Wl” occur.

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c

Deadlock for Two Processes

P1 requests M2 P2 requests M1
while holding M1 while holding M2

Deadlock: Bridge Crossing Example

Traffic only in one direction at a time.
Each section of a bridge can be viewed as a resource.

If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

Several cars may have to be backed up if a deadlock
occurs.

Deadlock: Dining-Philosophers Example

All philosophers start out hungry and that they
all pick up their left chopstick at the same
time. @ @

When a philosopher manages to get a
chopstick, it is not released until a second ==

chopstick is acquired and the philosopher has ;

eaten his share.

Question: Why did deadlock happen?
Enumerate all the conditions that have to be I-I
satisfied for deadlock to occur.

Question: What can be done to guarantee that
deadlock won’t happen?

Traffic Deadlock

e D I [0 D

[T]
s DD D D

Concepts to discuss

E) Deadlock
E—
—>

Spinlock vs. Blocking

Livelock

A System Model

* Resource typesR,, R,, ..., R,
CPU cycles, memory space, 1/0 devices

* Each resource type R, has W, instances.

e Each process utilizes a resource as follows:
— request
— use
—release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously:

Mutual exclusion: only one process at a time can use a
resource.

Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes.

No preemption: aresource can be released only voluntarily by
the process holding it, after that process has completed its task.

Circular wait: there exists a set {P,, P,, ..., Po} of waiting
processes such that P, is waiting for a resource that is held by P,,
P, is waiting for a resource that is held by

P,, ..., P._, is waiting for a resource that is held by
P., and P is waiting for a resource that is held by P,.

Resource Allocation Graph

Graph: G=(V,E)

* The nodes in V can be of two types (partitions):

- P={P, P,, ..., P,}, the set consisting of all the processes in the
system.

— R={Ry, R,, ..., R}, the set consisting of all resource types in the
system.

* Request edge — directed edge P, — R,
* Assignment edge — directed edge R; — P,

Resource Allocation Graph

Process Q

oo
oo

Resource Type with 4 instances

; oo
DD

P; requests instance of R; R

£ 0O
oo

P;is holding an instance of Rj =

Example of a Resource Allocation
Graph

R R

1 3

R, °

R,

Resource Allocation Graph With A

Deadlock
% -

R,

Resource Allocation Graph With A
Cycle But No Deadlock

Resource Allocation Graph
Example 1

Jey

Resource Allocation Graph
Example 2

Basic Facts

* If graph contains no cycles = no
deadlock.

* If graph contains a cycle =

— if only one instance per resource type,
then deadlock.

— if several instances per resource type,
possibility of deadlock.

