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Ch 8.1 – 8.3

Introduction to Deadlock



Potential Deadlock Example
/* thread one runs in this function */ 

void *do_work_one(void *param)

{ 

pthread_mutex_lock(&first_mutex); 

pthread_mutex_lock(&second_mutex); 

/** * Do some work */

pthread_mutex_unlock(&second_mutex); 

pthread_mutex_unlock(&first_mutex); 

pthread_exit(0); 

} 

/* thread two runs in this function */ 

void *do_work_two(void *param)

{ 

pthread_mutex_lock(&second_mutex); 

pthread_mutex_lock(&first_mutex); 

/** * Do some work */

pthread_mutex_unlock(&first_mutex); 

pthread_mutex_unlock(&second_mutex); 

pthread_exit(0); 

} 

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c

The code may not cause
deadlock if one thread
grabs both locks before the
other.

If both threads hold on the
one lock before trying
the second lock, a deadlock
will occur.

Why “potential”?

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/deadlock/deadlock.c


Deadlock for Two Processes

P1 P2

mutex1 mutex2

P1 requests M2
while holding M1

P2 requests M1
while holding M2



Deadlock: Bridge Crossing Example

• Traffic only in one direction at a time.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs 
up (preempt resources and rollback).

• Several cars may have to be backed up if a deadlock 
occurs.



Deadlock: Dining-Philosophers Example
All philosophers start out hungry and that they 
all pick up their left chopstick at the same 
time.

When a philosopher manages to get a 
chopstick, it is not released until a second 
chopstick is acquired and the philosopher has 
eaten his share.

Question: Why did deadlock happen? 
Enumerate all the conditions that have to be 
satisfied for deadlock to occur.

Question: What can be done to guarantee that 
deadlock won’t happen?



Traffic Deadlock



Concepts to discuss

Deadlock

Livelock

Spinlock vs. Blocking



A System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request 

– use 

– release



Deadlock Characterization

• Mutual exclusion: only one process at a time can use a 
resource.

• Hold and wait: a process holding at least one resource is 
waiting to acquire additional resources held by other processes.

• No preemption: a resource can be released only voluntarily by 
the process holding it, after that process has completed its task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting 
processes such that P0 is waiting for a resource that is held by P1, 
P1 is waiting for a resource that is held by 

P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously:



Resource Allocation Graph

• The nodes in V can be of two types (partitions):
– P = {P1, P2, …, Pn}, the set consisting of all the processes in the 

system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in the 
system.

• Request edge – directed edge P1 → Rj

• Assignment edge – directed edge Rj→ Pi

Graph: G=(V,E)



Resource Allocation Graph
• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj



Example of a Resource Allocation 
Graph



Resource Allocation Graph With A 
Deadlock



Resource Allocation Graph With A 
Cycle But No Deadlock



Resource Allocation Graph 
Example 1



Resource Allocation Graph 
Example 2



Basic Facts

• If graph contains no cycles no 
deadlock.

• If graph contains a cycle

– if only one instance per resource type, 
then deadlock.

– if several instances per resource type, 
possibility of deadlock.


