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Handling Deadlocks
Banker’s Algorithm



Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock 
state. (prevention and avoidance)

• Allow the system to enter a deadlock state and then 
recover. (recover)

• Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX.



Deadlock Prevention

• If we want to prevent the deadlocks from happening, 
we just need to break (or prevent) any one of the 
four necessary conditions.

– Mutual exclusion

– Hold and wait

– Non-preemption

– Circular wait



Safe States
• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can 

still request can be satisfied by currently available resources plus the 
resources held by all the Pj, with j < i.

– If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished.

– When Pj is finished, Pi can obtain needed resources, execute, return allocated 
resources, and terminate. 

– When Pi terminates, Pi+1 can obtain its needed resources, and so on. 

• The system is in a safe state if there exists a safe sequence for all 
processes.

• When a process requests an available resource, the system must decide 
if immediate allocation leaves the system in a safe state.



Safe Sequence and State Example

Maximum Needs Allocated

P0 10 5

P1 4 2

P2 5 2

Total Count

R 12

Table: Resource allocation Table: Total resources

Safe sequence 1: [ <p1,2>, <p0, 5>, <p2,3>]
Safe sequence 2: [ <p2,3>, <p0, 5>, <p1,2>]
More safe sequences?

total allocated is 9
3 remaining



Basic Facts

• If a system is in a safe state there can be no deadlock.

• If a system is in unsafe state, there exists the 
possibility of deadlock.

• Avoidance strategies  ensure that a system will never 
enter an unsafe state. 



Safe, Unsafe, and  Deadlock States 

safe

unsafe

deadlock



Resource-Allocation Graph Algorithm

Goal: prevent the system from entering an unsafe state.

• Claim edge Pi→ Rj indicates that process Pj may request resource 
Rj; represented by a dashed line.

• Claim edge converts to request edge when a process requests a 
resource.

• When a resource is released by a process, assignment edge 
reconverts to a claim edge.

• Resources must be claimed a priori in the system.

• If there is no cycle as the result of allocation, the system is safe.



Resource-Allocation Graph for 
Deadlock Avoidance

Both P1 and P2 may request R2



Unsafe State In Resource-
Allocation Graph

R2 now is allocated to P2.



Banker’s Algorithm by Dijkstra
• Applicable when there are multiple instances of each resource type.

• In a bank, the cash must never be allocated in a way such that it 
cannot satisfy the need of all its customers.

• Each process must state a priori the maximum number of instances  
of each kind of resource that it will ever need.

• When a process requests a resource it may have to wait.

• When a process gets all its resources it must return them in a finite 
amount of time.



Banker’s Algorithm: 
Data Structures

• Available: Vector of length m. If available [j] = k, there are k instances of 
resource type Rj available.

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 
instances of resource type Rj.

• Allocation: n x m matrix.  If Allocation[i,j] = k then Pi is currently 
allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of 
Rj to complete its task.

Need[i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, 

and m = number of resources types. 



Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.  Initialize:

Work = Available

Finish [i] = false for i = 0,1,2,3, …, n-1.

2. Find an i such that both: 

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state, otherwise in an 
unsafe state.



Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If Requesti [j] = k then process Pi
wants k instances of resource type Rj.

1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, since 
process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3.  Otherwise Pi must wait, since resources 
are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as 
follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;;

• If safe  the resources are allocated to Pi. (run safety algorithm)

• If unsafe  Pi must wait, and the old resource-allocation state is restored



Example of Banker’s Algorithm

• 5 processes P0 through P4; 3 resource types A (10 instances),  B (5
instances), and C (7 instances). [sum(allocatedi)+availablei == Ri]

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3  



Example (Cont.)
The content of the matrix. Define Need = Max – Allocation.

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, 
P3, P4, P2, P0> satisfies the safety criteria. 

MaxNeed
A B C

7 5 3

3 2 2

9 0 2

2 2 2

4 3 3

A B C

0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Allocation

= -

Available
A B C

3 3 2



Example P1 Request (1,0,2) (Cont.)

• Check that Request  Available  that is, (1,0,2)  (3,3,2)  true.
Allocation Need Available

A B C A B C A B C 
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0 
P2 3 0 1 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence <P1, P3, P4, P0, 
P2> satisfies safety requirement. 

• Can request for (3,3,0) by P4 be granted?
• Can request for (0,2,0) by P0 be granted?

Allocation(P1) = (2,0,0) + (1,0,2) = (3,0,2) 


