
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook 
authors, as well as L. Felipe Perrone, Joshua Stough, 
and other instructors.
Xiannong Meng, Fall 2021.

Ch 8.4-8.5

Handling Deadlocks
Banker’s Algorithm



Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock 
state. (prevention and avoidance)

• Allow the system to enter a deadlock state and then 
recover. (recover)

• Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX.



Deadlock Prevention

• If we want to prevent the deadlocks from happening, 
we just need to break (or prevent) any one of the 
four necessary conditions.

– Mutual exclusion

– Hold and wait

– Non-preemption

– Circular wait



Safe States
• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can 

still request can be satisfied by currently available resources plus the 
resources held by all the Pj, with j < i.

– If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished.

– When Pj is finished, Pi can obtain needed resources, execute, return allocated 
resources, and terminate. 

– When Pi terminates, Pi+1 can obtain its needed resources, and so on. 

• The system is in a safe state if there exists a safe sequence for all 
processes.

• When a process requests an available resource, the system must decide 
if immediate allocation leaves the system in a safe state.



Safe Sequence and State Example

Maximum Needs Allocated

P0 10 5

P1 4 2

P2 5 2

Total Count

R 12

Table: Resource allocation Table: Total resources

Safe sequence 1: [ <p1,2>, <p0, 5>, <p2,3>]
Safe sequence 2: [ <p2,3>, <p0, 5>, <p1,2>]
More safe sequences?

total allocated is 9
3 remaining



Basic Facts

• If a system is in a safe state there can be no deadlock.

• If a system is in unsafe state, there exists the 
possibility of deadlock.

• Avoidance strategies  ensure that a system will never 
enter an unsafe state. 



Safe, Unsafe, and  Deadlock States 

safe

unsafe

deadlock



Resource-Allocation Graph Algorithm

Goal: prevent the system from entering an unsafe state.

• Claim edge Pi→ Rj indicates that process Pj may request resource 
Rj; represented by a dashed line.

• Claim edge converts to request edge when a process requests a 
resource.

• When a resource is released by a process, assignment edge 
reconverts to a claim edge.

• Resources must be claimed a priori in the system.

• If there is no cycle as the result of allocation, the system is safe.



Resource-Allocation Graph for 
Deadlock Avoidance

Both P1 and P2 may request R2



Unsafe State In Resource-
Allocation Graph

R2 now is allocated to P2.



Banker’s Algorithm by Dijkstra
• Applicable when there are multiple instances of each resource type.

• In a bank, the cash must never be allocated in a way such that it 
cannot satisfy the need of all its customers.

• Each process must state a priori the maximum number of instances  
of each kind of resource that it will ever need.

• When a process requests a resource it may have to wait.

• When a process gets all its resources it must return them in a finite 
amount of time.



Banker’s Algorithm: 
Data Structures

• Available: Vector of length m. If available [j] = k, there are k instances of 
resource type Rj available.

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 
instances of resource type Rj.

• Allocation: n x m matrix.  If Allocation[i,j] = k then Pi is currently 
allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of 
Rj to complete its task.

Need[i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, 

and m = number of resources types. 



Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.  Initialize:

Work = Available

Finish [i] = false for i = 0,1,2,3, …, n-1.

2. Find an i such that both: 

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state, otherwise in an 
unsafe state.



Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If Requesti [j] = k then process Pi
wants k instances of resource type Rj.

1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, since 
process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3.  Otherwise Pi must wait, since resources 
are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as 
follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;;

• If safe  the resources are allocated to Pi. (run safety algorithm)

• If unsafe  Pi must wait, and the old resource-allocation state is restored



Example of Banker’s Algorithm

• 5 processes P0 through P4; 3 resource types A (10 instances),  B (5
instances), and C (7 instances). [sum(allocatedi)+availablei == Ri]

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3  



Example (Cont.)
The content of the matrix. Define Need = Max – Allocation.

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, 
P3, P4, P2, P0> satisfies the safety criteria. 

MaxNeed
A B C

7 5 3

3 2 2

9 0 2

2 2 2

4 3 3

A B C

0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Allocation

= -

Available
A B C

3 3 2



Example P1 Request (1,0,2) (Cont.)

• Check that Request  Available  that is, (1,0,2)  (3,3,2)  true.
Allocation Need Available

A B C A B C A B C 
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0 
P2 3 0 1 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence <P1, P3, P4, P0, 
P2> satisfies safety requirement. 

• Can request for (3,3,0) by P4 be granted?
• Can request for (0,2,0) by P0 be granted?

Allocation(P1) = (2,0,0) + (1,0,2) = (3,0,2) 


