
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 9.2-9.3

Memory Management
Contiguous Allocation and Introduction to Paging

Contiguous Allocation
• Multiple-partition allocation: Programs are put into

various parts of the memory. But each program occupies
a contiguous part of the memory.

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Protection

• Need to censure that a process can access only those
addresses in it address space.

• Provide this protection by using a pair of base and limit
registers define the logical address space of a process.

Dynamic relocation using a
relocation register

CPU

14000

relocation

register

+

MMU

memory

logical

address
physical

address

346 14346

This is an example of how to convert a logical address to a physical one.

Hardware Support for Relocation
and Limit Registers

CPU memory

logical

address
physical

address
< +

relocation

register

limit

register

yes

no

trap;

addressing error

CPU must check every
memory access generated
in user mode to be sure it is
between base and limit for
that user.

Logical address ranges from
0 to n-1, so the condition
logical address < limit
guarantees validity of the
address

Dynamic Loading

• Routine (program parts) is not loaded until it is called.

• Better memory-space utilization; unused routine is
never loaded.

• Useful when large amounts of code are needed to
handle infrequently occurring cases.

• No special support from the operating system is
required; implemented through program (compiler,
loader) design.

Dynamic Linking
• Linking postponed until execution time.

• Small piece of code, stub, used to locate the appropriate memory-
resident library routine.

• Stub replaces itself with the address of the routine, and executes
the routine.

• Operating system needed to check if routine is in process’s memory
address space.

• Dynamic linking is particularly useful for libraries.

• In Windows, they are *.dll files (e.g., C:\Program Files (x86)\Windows
Defender\)

• In Linux, they are *.so.* files (e.g., /usr/lib)

Fragmentation

• External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may
be slightly larger than requested memory; this size
difference is memory internal to a partition, but
not being used

• First fit analysis reveals that given N blocks
allocated, another 0.5 N blocks lost to
fragmentation (a total of 1.5N blocks)
– 50-percent rule: “1/3 may be unusable”

External and Internal Fragmentation

https://images.app.goo.gl/ghC55ZDKDBXLFHMH6

http://www.differencebetween.net/technology/difference-
between-internal-fragmentation-and-external-fragmentation/

https://images.app.goo.gl/ghC55ZDKDBXLFHMH6
http://www.differencebetween.net/technology/difference-between-internal-fragmentation-and-external-fragmentation/

Fragmentation (Cont.)

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free

memory together in one large block
– Compaction is possible only if relocation is

dynamic, and is done at execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store (e.g., hard disks)
has the same fragmentation problems

Paging

• Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

– Avoids external fragmentation

• Divide physical memory into fixed-sized blocks called frames

– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and
load program

• Set up a page table to translate logical to physical addresses

Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

– Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

– For given logical address space 2m and page size 2n

assuming the address has m bits.

page number page offset

p d

m -n n

Paging Hardware

Paging Model of Logical and
Physical Memory

Paging Example

• Logical address: n =
2 and m = 4. Using a
page size of 4 bytes
and a physical
memory of 32 bytes
(8 pages)

Paging – Example of internal
fragmentation

• Page size = 2,048 bytes

• Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962
bytes

• Worst case fragmentation = 1 frame – 1 byte

• On average fragmentation = 1 / 2 frame size

• So small frame sizes desirable?

• But each page table entry takes memory to track

Page Size Settings

• Page sizes growing over time with larger memory
capacity
– Solaris supports two page sizes – 8 KB and 4 MB

• Our current Linux page size is 4 K by default. We can use
larger size by setting the system configuration file
– Run pagesize.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/memory/pag
esize.c

– How to use larger page size?
https://linuxgazette.net/155/krishnakumar.html

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/memory/pagesize.c
https://linuxgazette.net/155/krishnakumar.html

Free Frames

Before allocation After allocation

