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Ch 9.2-9.3

Memory Management
Contiguous Allocation and Introduction to Paging



Contiguous Allocation
• Multiple-partition allocation: Programs are put into 

various parts of the memory. But each program occupies 
a contiguous part of the memory.
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Protection

• Need to censure that a process can access only those 
addresses in it address space.

• Provide this protection by using  a pair of base and limit 
registers define the logical address space of a process.



Dynamic relocation using a 
relocation register

CPU

14000

relocation

register

+

MMU

memory

logical

address
physical

address

346 14346

This is an example of how to convert a logical address to a physical one.



Hardware Support for Relocation 
and Limit Registers
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CPU must check every 
memory access generated 
in user mode to be sure it is 
between base and limit for 
that user.

Logical address ranges from 
0 to n-1, so the condition 
logical address < limit 
guarantees validity of the 
address



Dynamic Loading

• Routine (program parts) is not loaded until it is called.

• Better memory-space utilization; unused routine is 
never loaded.

• Useful when large amounts of code are needed to 
handle infrequently occurring cases.

• No special support from the operating system is 
required; implemented through program (compiler, 
loader) design.



Dynamic Linking
• Linking postponed until execution time.

• Small piece of code, stub, used to locate the appropriate memory-
resident library routine.

• Stub replaces itself with the address of the routine, and executes 
the routine.

• Operating system needed to check if routine is in process’s memory 
address space.

• Dynamic linking is particularly useful for libraries.

• In Windows, they are *.dll files (e.g., C:\Program Files (x86)\Windows 
Defender\)

• In Linux, they are *.so.* files (e.g., /usr/lib)



Fragmentation

• External Fragmentation – total memory space 
exists to satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may 
be slightly larger than requested memory; this size 
difference is memory internal to a partition, but 
not being used

• First fit analysis reveals that given N blocks 
allocated, another 0.5 N blocks lost to 
fragmentation (a total of 1.5N blocks)
– 50-percent rule: “1/3 may be unusable”



External and Internal Fragmentation

https://images.app.goo.gl/ghC55ZDKDBXLFHMH6

http://www.differencebetween.net/technology/difference-
between-internal-fragmentation-and-external-fragmentation/

https://images.app.goo.gl/ghC55ZDKDBXLFHMH6
http://www.differencebetween.net/technology/difference-between-internal-fragmentation-and-external-fragmentation/


Fragmentation (Cont.)

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free 

memory together in one large block
– Compaction is possible only if relocation is 

dynamic, and is done at execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store (e.g., hard disks) 
has the same fragmentation problems



Paging

• Physical  address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available

– Avoids external fragmentation

• Divide physical memory into fixed-sized blocks called frames

– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and 
load program

• Set up a page table to translate logical to physical addresses



Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table
which contains base address of each page in physical 
memory

– Page offset (d) – combined with base address to define 
the physical memory address that is sent to the memory 
unit

– For given logical address space 2m and page size 2n 

assuming the address has m bits.
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Paging Hardware



Paging Model of Logical and  
Physical Memory



Paging Example 

• Logical address:  n = 
2 and  m = 4. Using a 
page size of 4 bytes 
and a physical 
memory of 32 bytes 
(8 pages)



Paging – Example of internal 
fragmentation

• Page size = 2,048 bytes

• Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 
bytes

• Worst case fragmentation = 1 frame – 1 byte

• On average fragmentation = 1 / 2 frame size

• So small frame sizes desirable?

• But each page table entry takes memory to track



Page Size Settings

• Page sizes growing over time with larger memory 
capacity
– Solaris supports two page sizes – 8 KB and 4 MB

• Our current Linux page size is 4 K by default. We can use 
larger size by setting the system configuration file
– Run pagesize.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/memory/pag
esize.c

– How to use larger page size? 
https://linuxgazette.net/155/krishnakumar.html

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/memory/pagesize.c
https://linuxgazette.net/155/krishnakumar.html


Free Frames

Before allocation After allocation


