
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 9.4 – 9.5

Memory Management: Paging 2

Implementation of Page Table

• Page table is kept in main memory
– Page-table base register (PTBR) points to the page table

– Page-table length register (PTLR) indicates size of the
page table

• In this scheme every data/instruction access requires
two memory accesses
– One for the page table and one for the data / instruction

• The two-memory access problem can be solved by the
use of a special fast-lookup hardware cache called
translation look-aside buffers (TLBs) (also called
associative memory).

Translation Look-Aside Buffer

• Some TLBs store address-space identifiers (ASIDs)
in each TLB entry – uniquely identifies each
process to provide address-space protection for
that process
– Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded from memory into

the TLB for faster access next time
– Replacement policies must be considered
– Some entries can be wired down for

permanent fast access

Hardware

• Associative memory – parallel search

• Address translation (p, d)

– If p is in associative register, retrieve the frame # f
from TLB

– Otherwise get frame # from page table in memory

Page # Frame #

Paging Hardware With TLB

Swapping
• A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution.

• Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images.

• Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process can
be loaded and executed.

• Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped.

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux,
and Windows).

Schematic View of Swapping

Operating

System

user

space

process

P1

process

P2

swap out

swap in

main memory backing storage

Memory Protection

• Memory protection implemented by associating
protection bits with each frame.

• Valid-invalid bit attached to each entry in the page
table:

– “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

– “invalid” indicates that the page is not in the process’ logical
address space.

Valid Bit

1 bit value

Effective Access Time
• Associative Lookup = ε time unit (e.g., nanosecond)

• Assume memory cycle time is t nanosecond

• Hit ratio – percentage of times that a page number is
found in the associative registers; ratio related to
number of associative registers.

• Hit ratio = α

• Effective Access Time (EAT)

EAT = (t + ε) α + (2t + ε)(1 – α)

why 2?

Effective Access Time

• Effective Access Time (EAT)

EAT = (t + ε) α + (2t + ε)(1 – α)

• First access to memory is to load the page table entry
when it is not in the TLB (cache). The second access
actually reads the data or instruction from the memory.

why 2?

Effective Access Time Example

• Effective Access Time (EAT)

EAT = (t + ε) α + (2t + ε)(1 – α)

• Assume α = 0.8 (80 percent hit ratio for PTL entries)

• ε = 1 ns, t = 20 ns

• EAT = (20+1)*0.80 + (2*20 +1)*0.20 = 25 ns

• If α = 0.99, EAT = (20+1)*0.99 + (2*20 +1)*0.01 = 21.2 ns

Added Benefit: shared pages

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among processes (i.e.,

text editors, compilers, window systems).

– Shared code must appear in same location in the logical address space
of all processes.

• Private code and data
– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere in the
logical address space.

Large Page Table?
•Break up the logical
address space into
multiple page tables

• A simple technique is a
two-level page table

• The page table is broken
into pages

P1 page offset

L bits

n bitspage number: P1 + P2 bits

P2

Address Translation

aggregates all the pages that together
make up the page table

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits.

– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:

– a 10-bit page number.

– a 10-bit page offset.

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement
within the page of the outer page table.

page number page offset

p1 p2 d

10 10 12

