
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 10.1 – 10.2

Introduction to Virtual Memory

Problems with Memory System

• The total memory needed by running processes may
exceed the amount of physical memory.
– In one example we saw, there were 400+ processes active

at one time on linuxremote.

• At the same time, only about 10 percent of the code
is really needed (executed) in a program life time,
according to the 90/10 rule.
– https://softwareengineering.stackexchange.com/questions/334528/w

hat-is-the-meaning-of-the-90-10-rule-of-program-optimization

https://softwareengineering.stackexchange.com/questions/334528/what-is-the-meaning-of-the-90-10-rule-of-program-optimization

Solutions?

• We keep only the active part of the programs in
memory as needed.

• Other less active part of the programs are stored on
secondary storage. They are brought into the
memory only when being called.

• Doing so maximizes the number of programs
(processes) can be in memory at any time.

• Virtual memory is one such solution.

Virtual Memory

• Virtual memory – separation of user logical memory from
physical memory.
– Only part of the program needs to be in memory for execution.

– Logical address space can therefore be much larger than physical address
space.

– Allows address spaces to be shared by several processes.

– Allows for more efficient process creation.

• Virtual memory can be implemented via:
– Demand paging

– Demand segmentation

Virtual Memory That is
Larger Than Physical Memory

Demand Paging
• Bring a page into memory only when it is needed.

– Less I/O needed.

– Less memory needed.

– Faster response.

– More users.

• When a page is needed (there is a reference to it):
– invalid reference  abort.

– not-in-memory  bring it into to memory.

• Lazy swapper – never swap a page into memory unless
page will be needed.

Mapping of a Paged Memory to
Contiguous Disk Space

Note: contiguous
space on disk...

Valid-Invalid Bit
• With each page table entry a valid bit

is associated
(1  in-memory, 0 not-in-memory)

• Initially valid bit is set to 0 on all
entries.

• During address translation, if valid bit
in page table entry is 0  page fault.

• Example of a page table snapshot 

sample page table

1

1

0



Frame # valid

0

0

1

1

Page Table When Some Pages Are
Not in Main Memory

Page Fault

When a page that is needed is not in
memory, we say a page fault occurs.

Page Fault and Its Handling
1. For any reference to a page, the very first reference will trap to

OS  page fault.

2. OS looks at page table and page limit table to decide:
– If it was an invalid reference (address out of bound)  abort.
– If it was a reference to a page that is not in memory, continue.

3. Get an empty frame from the free-list.

4. Bring the page content from disk into frame.

5. Update the page table and make valid bit = 1.

6. Restart the instruction that caused the page fault.

Steps in Handling a Page Fault

No free frame: now what?

• Page replacement: Are all those pages in memory
being referenced? Choose one to swap back out to
disk and make room to load a new page.
– Algorithm: How you choose a victim.

– Performance: Want an algorithm that will result in minimum
number of page faults.

• Side effect: The same page may be brought in and out
of memory several times.

Need For Page Replacement

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to

select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the
page and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault – increasing EAT

Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page transfers
– only modified pages are written to disk.

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory.

