
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 10.5,
10.8. 10.9

The Working Set Model And
Memory-Mapped Files

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– Low CPU utilization.

– Operating system thinks that it needs to increase the degree
of multiprogramming.

– Another process added to the system.

• Thrashing  a process is busy swapping pages in and
out.

Thrashing

• Why does paging work?
Locality model
– Process migrates from one locality to another.

– Localities may overlap.

• Why does thrashing occur?
 size of locality > total memory size

Locality in Memory-Reference Pattern

Clusters of
memory
references –
working set

Working-Set Model
•   working-set window  a fixed number of page

references.

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)
– if  too small will not encompass entire locality.

– if  too large will encompass several localities.

– if  =  will encompass entire program.

• D = WSSi  total demand frames

• if D > m Thrashing

• Policy: if D > m, then suspend one of the processes.

Working-set model

 == 10 in this example

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000
– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

– If one of the bits in memory = 1  page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time
units.

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Memory-mapped Files
• Memory mapping a file can be accomplished by mapping a

disk block to one or more pages in memory.

• A page-sized portion of the file is read from the file system
into a physical page. Subsequent read() and write()
operations are handled as memory (not disk) accesses.

• Writing to the file in memory is not necessarily synchronous
to the file on disk. The file can be committed back to disk
when it’s closed.

Memory-mapped Files

1
2
3
4
5
6

1
2
3
4
5
6

process A
virtual memory

process B
virtual memory

1

2

3

4

5

6

1 2 3 4 5 6

disk file
Physical memory

Prepaging
• Prepaging: In order to avoid the initial number of page

faults, the system can bring into memory all the pages that
will be needed all at once.

• This can also be applied when a swapped-out process is
restarted. The smart thing to do is to remember the working
set of the process.

• One question that arises is whether all the pages brought in
will actually be used…

• Is the cost of prepaging less than the cost of servicing each
individual page fault?

Major and Minor Page Faults

• A page fault occurs when a page needed by a process
does not have a valid mapping in its page table (valid bit
== 0).

• However, the needed frame might be actually in
memory! It may just not be mapped to the process.

• If the frame needed is NOT in memory, we call this fault a
major page fault – the frame has to be loaded from disk.

• If the frame needed is in memory, we call this fault a
minor page fault – the mapping can be established
without a disk I/O.

Reasons for Minor Page Fault
• There are two reasons for minor page fault to occur.

1. A process may reference a shared page that is in
memory, but not mapped to the current process.

2. A frame has been moved to the free list by the
memory management system. (We’ll discuss the
issue of reclaiming free frames later.)

• In either case, all the MMU needs to do is to update the
page table reference, much less expensive than reading
the frame from disk.

Observing Major and Minor Faults

• In Linux, one can view the number of major and
minor page faults using the ps (process status)
command.

• ps -eo min_flt,maj_flt,cmd

There is no space in min_flt,maj_flt,cmd

The command means “show all processes with minor
and major page faults caused by all commands.”

Sample Output

MINFL MAJFL CMD
4618573 3819 /usr/sbin/sshd –D
1068498 1206 /usr/lib/systemd/systemd-logind
17611 2312 /sbin/auditd
1851 0 vim

From our Linuxremote1, the following are the sample outputs
for the commands sshd -D, system-logind, auditd, and vim.

Some notes:
1. Because large number of processes are running, you’d use

grep command to extract the output, e.g.,
ps –eo min_flt,maj_flt,cmd | grep “sshd –D”

2. Why the number of major fault for “vim” is zero?

