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The Working Set Model And
Memory-Mapped Files



Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:
– Low CPU utilization.

– Operating system thinks that it needs to increase the degree 
of multiprogramming.

– Another process added to the system.

• Thrashing  a process is busy swapping pages in and 
out.



Thrashing 

• Why does paging work?
Locality model
– Process migrates from one locality to another.

– Localities may overlap.

• Why does thrashing occur?
 size of locality > total memory size



Locality in Memory-Reference Pattern

Clusters of 
memory 
references –
working set



Working-Set Model
•   working-set window  a fixed number of page 

references. 

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)
– if  too small will not encompass entire locality.

– if  too large will encompass several localities.

– if  =  will encompass entire program.

• D = WSSi  total demand frames 

• if D > m Thrashing

• Policy: if D > m, then suspend one of the processes.



Working-set model

 == 10 in this example



Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000
– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all 
reference bits to 0.

– If one of the bits in memory = 1  page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time 
units.



Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.



Memory-mapped Files
• Memory mapping a file can be accomplished by mapping a 

disk block to one or more pages in memory.

• A page-sized portion of the file is read from the file system 
into a physical page. Subsequent read() and write()
operations are handled as memory (not disk) accesses. 

• Writing to the file in memory is not necessarily synchronous 
to the file on disk. The file can be committed back to disk 
when it’s closed.



Memory-mapped Files
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Prepaging
• Prepaging: In order to avoid the initial number of page 

faults, the system can bring into memory all the pages that 
will be needed all at once.

• This can also be applied when a swapped-out process is 
restarted. The smart thing to do is to remember the working 
set of the process.

• One question that arises is whether all the pages brought in 
will actually be used…

• Is the cost of prepaging less than the cost of servicing each 
individual page fault? 



Major and Minor Page Faults

• A page fault occurs when a page needed by a process 
does not have a valid mapping in its page table (valid bit 
== 0).

• However, the needed frame might be actually in 
memory! It may just not be mapped to the process.

• If the frame needed is NOT in memory, we call this fault a 
major page fault – the frame has to be loaded from disk.

• If the frame needed is in memory, we call this fault a 
minor page fault – the mapping can be established 
without a disk I/O.



Reasons for Minor Page Fault
• There are two reasons for minor page fault to occur.

1. A process may reference a shared page that is in 
memory, but not mapped to the current process.

2. A frame has been moved to the free list by the 
memory management system. (We’ll discuss the 
issue of reclaiming free frames later.)

• In either case, all the MMU needs to do is to update the 
page table reference, much less expensive than reading 
the frame from disk.



Observing Major and Minor Faults

• In Linux, one can view the number of major and 
minor page faults using the ps (process status) 
command.

• ps -eo min_flt,maj_flt,cmd

There is no space in min_flt,maj_flt,cmd

The command means “show all processes with minor 
and major page faults caused by all commands.”



Sample Output

MINFL  MAJFL CMD
4618573  3819 /usr/sbin/sshd –D
1068498  1206 /usr/lib/systemd/systemd-logind
17611 2312 /sbin/auditd
1851      0 vim

From our Linuxremote1, the following are the sample outputs 
for the commands sshd -D, system-logind, auditd, and vim.

Some notes:
1. Because large number of processes are running, you’d use 

grep command to extract the output, e.g.,
ps –eo min_flt,maj_flt,cmd | grep “sshd –D”

2. Why the number of major fault for “vim” is zero?


