
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 10.5,
10.8. 10.9

Other Issues in Virtual Memory
Examples

Overview

• Reclaiming free memory

• Virtual memory for kernel process(es)

• Virtual memory examples: Linux and Windows

Reclaiming Free Memory

• The issue of reclaiming free memory:

– If we wait until a major page fault, it is too costly!

– The MMU tries to avoid as much as possible any
major faults. One practical solution is to reclaim
free memory when possible.

• In a global page-replacement policy, the MMU
periodically reclaims free frames from all processes
under certain given condition(s).

• A strategy to implement global page-replacement
policy
– All memory requests are serviced by the global

free-frame list.

– Rather than waiting for the free list to drop to zero
before we begin selecting pages for replacement,
page replacement is triggered when the list falls
below a certain threshold.

• This strategy attempts to ensure there is always
sufficient free memory to satisfy new requests.

Reclaiming Pages

Reclaiming Pages Example

Allocating Kernel Memory

• Algorithms so far are applied to user processes.
Kernel processes need special consideration.

• Often allocated from a separate free-memory pool

– Kernel requests memory for structures of varying
sizes

– Some kernel memory needs to be contiguous

• i.e., for device I/O

Buddy System

• Allocates memory from fixed-size segment
consisting of physically-contiguous pages

• Memory allocated using power-of-2 allocator

– Satisfies requests in units sized as power of 2

– Request rounded up to next highest power of 2

– When smaller allocation needed than is available,
current chunk split into two buddies of next-lower
power of 2
• Continue until appropriate sized chunk available

Buddy System Example

• For example, assume 256KB chunk available, kernel
requests 21KB

– Split into AL and AR of 128KB each

• One further divided into BL and BR of 64KB

–One further into CL and CR of 32KB each –
one used to satisfy the given request

• Advantage – quickly coalesce unused chunks into
larger chunk

• Disadvantage - fragmentation

Buddy System Allocator

Slab Allocator
• Alternate strategy
• Slab is one or more physically contiguous pages
• Cache consists of one or more slabs
• Single cache for each unique kernel data structure

– Each cache filled with objects – instantiations of the data
structure

• When cache created, filled with objects marked as free
• When structures stored, objects marked as used
• If slab is full of used objects, next object allocated from empty

slab
– If no empty slabs, new slab allocated

• Benefits include no fragmentation, fast memory request
satisfaction

Slab Allocation

Slab Allocator in Linux

• For example process descriptor is of type struct task_struct

• Approx 1.7KB of memory

• New task -> allocate new struct from cache

– Will use existing free struct task_struct

• Slab can be in three possible states

1. Full – all used

2. Empty – all free

3. Partial – mix of free and used

• Upon request, slab allocator

1. Uses free struct in partial slab

2. If none, takes one from empty slab

3. If no empty slab, create new empty

Slab Allocator in Linux (Cont.)

• Slab started in Solaris, now wide-spread for both
kernel mode and user memory in various OSes

• Linux 2.2 had SLAB, now has both SLOB and SLUB
allocators
– SLOB for systems with limited memory

• Simple List Of Blocks – maintains 3 list objects for small,
medium, large objects

– SLUB is performance-optimized SLAB removes per-
CPU queues, metadata stored in page structure
• SLUB: Unqueued SLAB allocator

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf

https://lwn.net/Articles/229096/

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://lwn.net/Articles/229096/

VIRTUAL MEMORY SYSTEM EXAMPLES

Linux

• Use demanding paging, allocating pages from a list of
free frames.

• Employ a global page-replacement policy similar to
LRU-approximation clock algorithm.

• Maintain two types of page lists: an active list
containing pages that are in use, and an inactive list
containing pages that have not been used recently
and are eligible to be reclaimed.

Maintaining the Two Lists
• Each page has an accessed bit that is set whenever the page is referenced.
• When a page is first allocated, its access bit is set, the page is added to the

rear of the active_list.
• Whenever a page is referenced, its access bit is set, the page is moved to

the rear of the active_list.
• Periodically the access bit of pages in the active_list are reset.
• Over time, the least recently used pages will be at the front of the

active_list.
• When the reclaiming algorithm is run, some pages are moved from the

front of the active_list to the rear of the inactive_list.
• Note that the use and the meaning of “front” and “rear” in these two lists.
• See an illustration on next slide.

Active and Inactive Lists

rear front

front rear

Inactive_list

Active_list

new page

referenced

Linux Virtual Memory References

• Some relevant references
– Better active/inactive list balancing

https://lwn.net/Articles/495543/
– Understanding memory information on Linux

systems https://linux-audit.com/understanding-
memory-information-on-linux-systems/

– Page Frame Reclamation
https://www.kernel.org/doc/gorman/html/understan
d/understand013.html

https://lwn.net/Articles/495543/
https://linux-audit.com/understanding-memory-information-on-linux-systems/
https://www.kernel.org/doc/gorman/html/understand/understand013.html

Windows

• Uses demand paging with clustering. Clustering brings in
pages surrounding the faulting page

• Processes are assigned working set minimum and working
set maximum

• Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

• A process may be assigned as many pages up to its working
set maximum

• When the amount of free memory in the system falls below
a threshold, automatic working set trimming is performed
to restore the amount of free memory

• Working set trimming removes pages from processes that
have pages in excess of their working set minimum

Solaris

• Maintains a list of free pages to assign faulting processes
• lotsfree – threshold parameter (amount of free memory) to

begin scanning at a slow rate (high threshold)
• desfree – desired amount of free frames (mid point)
• minfree – threshold parameter to begin swapping (low

threshold of free frames)
• Paging is performed by the pageout process
• pageout scans pages using modified clock algorithm
• scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan
• pageout is called more frequently depending upon the amount

of free memory available
• Priority paging gives priority to process code pages

Solaris 2 Page Scanner

Solaris page reclaiming

