
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 14.4-14.5

File System Implementation 2

Review

• We discussed the file control block (FCB) in Linux,
that is the inode.

• We also discussed general directory structure in
Linux.

• Today we will look at some other implementation
issues.
– Virtual file system, and

– File block allocation strategies

In-Memory File System Structures

file open

file read

Per-process open-file
table part of PCB

Directory Implementation

• Linear list of file names with pointer to the data
blocks:

– simple to program, but…

– time-consuming to execute.

• Hash Table:

– decreases directory search time,

– collisions – situations where two file names hash to the
same location,

– fixed size.

The directory is a symbol table that maps file names to file
control block (inode) which has pointers that lead to the blocks
comprising a file.

An Example
• Consider ‘open(“hello.txt”, O_RDONLY)’ in

– http://www.eg.bucknell.edu/~cs315/F2021/meng/code/files/file-
stream.c

• Where does the file “hello.txt” and “file-stream.c” reside?

• On any remote school Linux computer!
– linuxremote.bucknell.edu

– Use “df” to find out (you may have to use “grep” to look for the string
‘cs315’

• Implication?

• File system has to work with networked files

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/files/file-stream.c

Examples of “df” Results

df | less
on linuxremot

df | grep cs315
on linuxremote

Virtual File Systems

• Virtual File Systems (VFS) provide an object-oriented
way of implementing file systems.

• VFS allows the same system call interface (the API) to
be used for different types of file systems.

• The API is to the VFS interface, rather than any specific
type of file system.

Schematic View of Virtual File System

ext3 FAT 32 NFS

same API for
all file system
types

Virtual File System Implementation

• For example, Linux has four file object types:
– inode, file, superblock, dentry

• dentry: directory entry, e.g., /usr/bin/ls, both usr and bin are dentries
• https://github.com/torvalds/linux/blob/master/include/linux/dcache.h

• VFS defines set of operations on the objects that must be
implemented, inode -> vnode
– Every object has a pointer to a function table

• Function table has addresses of routines to implement that function on that object
• For example:
• int open() -- Open a file
• int close() -- Close an already-open file
• ssize_t read() -- Read from a file
• ssize_t write() -- Write to a file
• int mmap() -- Memory-map a file

https://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

https://github.com/torvalds/linux/blob/master/include/linux/dcache.h
https://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

NFS (Network File System) Protocol

• Provides a set of remote procedure calls (RPC) for remote
file operations.

• Early versions of NFS servers are stateless; each request has
to provide a full set of arguments; NFS V4 is very different,
stateful, supporting many more operations

• Modified data must be committed to the server’s disk
before results are returned to the client (lose advantages of
caching)

• The NFS protocol does not provide concurrency-control
mechanisms

Three Major Layers of File System Architecture

• UNIX file-system interface (based on the open, read, write,
and close calls, and file descriptors)

• Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished
according to their file-system types
– The VFS activates file-system-specific operations to handle local requests

according to their file-system types
– Calls the NFS protocol procedures for remote requests

• NFS service layer – bottom layer of the architecture
– Implements the NFS protocol

Schematic View of NFS Architecture

Server

Client

RPC: remote procedure calls
XDR: external data representation

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We’ll
discuss three options:

Contiguous allocation,

Linked allocation,

Indexed allocation.

A PC Disk Example

https://commons.wikimedia.org/wiki/File:Laptop-hard-drive-exposed.jpg

https://commons.wikimedia.org/wiki/File:Laptop-hard-drive-exposed.jpg

Disk Structure

sector

track

read/write head

arm

direction of rotation

direction of movement

Points to consider:

Sector sizes (number of bits
per sector) are fixed in most
disks, which means the data
density is lower on outside
tracks.

Newer formats, e.g., zone-bit-
recording, uses variable size
sectors so sectors have
similar data density.

The disk rotates at a constant
speed. To find a block, the
head is moved to the
appropriate track, and then
the correct sector is found as
the disk rotates. Organization of a disk surface

Disk Structure

sector

track

read/write head

arm

direction of rotation

direction of movement

The disk rotation is given in
rotations per minute (RPM).

The time to find a track is
proportional to the distance
the head must travel.

The average time to find a
sector within a track is
roughly half the time for a
full rotation.

Question: If the time to move

from track i to track (i+1) is
given by d, assuming that the
disk head is at track 0 (all the
way out), could you calculate
the time to get to sector 4 in
track 5? Organization of a disk surface

Disk Structure

direction of movement

direction of rotation

Multi-surface disk

arm

read/write heads

cylinder

A cylinder is the collection of all the
same tracks across all the multiple
disk surfaces.

There is a time associated with
turning heads on and off so that a
different surface can be accessed.
We call this overhead the head-
switching time.

The time to move the arm to read
another cylinder is due to the
mechanics of the arm. It is certainly
much large than the head-switching
time, which is due to electronics
only.

Question: How should one organize
data across multiple surfaces to
minimize access overhead?

Contiguous Allocation
• Each file occupies a set of contiguous blocks on the

disk.

• Simple: only starting location (block #) and length
(number of blocks) are required.

• Suitable for sequential and random access.

• Wasteful of space: dynamic storage-allocation
problem; external fragmentation.

• Files cannot grow unless more space than necessary is
allocated when file is created (clearly this strategy can
lead to internal fragmentation).

Contiguous Allocation of Disk
Space

To deal with the dynamic
allocation problem (external
fragmentation), the system
should periodically compact
the disk.

Compaction may take a long
time, during which the system
is effectively down.

To deal with possibly growing
files, one needs to pre-allocate
space larger than required at
the initial time => this leads to
internal fragmentation.

Linked Allocation
Each file is a linked list of disk
blocks.

Simple: need only starting
address.

Overhead: each block links to
the next.

Space cost to store pointer.

Time cost to read one block to
find the next.

Internal fragmentation, but not
external.
Sequential access comes
naturally, random does not.

Example: File-Allocation Table (FAT)

Simple and efficient: One entry
for each block; indexed by block
number. The table implements
the list linking the blocks in a
file.

Growing a file is easy: find a
free block and link it in.

Random access is easy.

If the FAT is not cached in
memory, a considerable
number of disk seeks happens.

Used by MS-DOS and OS/2.

Indexed Allocation
Brings all pointers together into
an index block.

One index block per file.

Random access comes easy.

Dynamic access without external
fragmentation, but have
overhead of index block.

Wasted space: how large should
an index block be to minimize
the overhead?

• linked index blocks
• multilevel index
• combined scheme

Combined Scheme: UNIX
If file is small enough, use only
direct blocks pointers.

If number of blocks in file is greater
than the number of direct block
pointers, use single, double, or
triple indirect.

Additional levels of indirection
increase the number of blocks that
can be associated with a file.

Index blocks can be cached in
memory, like FAT. Access to data
blocks, however, may require
many disk seeks.

