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File System Implementation 3



Review

• We discussed different ways of allocating blocks for file data

– contiguous allocation in which data blocks for a file are 
contiguous

– linked allocation in which the data blocks are “chained” 
together, similar to a linked list

– indexed allocation in which one index block points all data 
blocks

– hybrid (or combination) of the above such as what is used 
in Linux systems.



Performance
• Best method depends on file access type

– Contiguous great for sequential and random access

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous 
or linked

• Indexed more complex

– Single block access could require 2 index block reads 
then data block read

– Clustering can help improve throughput, reduce CPU 
overhead



Free-Space Management

• File system maintains free-space list to 
track available blocks/clusters

– (Using term “block” for simplicity)

• Bit vector or bit map (n blocks) …

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Free block number calculation

(number of bits per word) * (number of 0-value words)

+ offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit



Free-Space Management (Cont.)

• Bit map requires extra space

– Example:

block size = 4KB =  212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

• Easy to get contiguous files



Linked Free Space List on Disk

▪ Linked list (free list)

• Cannot get 
contiguous space 
easily

• No waste of space

• No need to traverse 
the entire list if # free 
blocks recorded



Free-Space Management (Cont.)

• Grouping 
– Modify linked list to store address of next n-1 free 

blocks in first free block, plus a pointer to next 
block that contains free-block-pointers

• Counting
– Because space is frequently contiguously used and 

freed,  with contiguous-allocation allocation, 
extents, or clustering
• Keep address of first free block and count of following 

free blocks
• Free space list then has entries containing addresses and 

counts



Free-Space Management (Cont.)
• Space Maps

– Used in ZFS https://en.wikipedia.org/wiki/ZFS
– Consider meta-data I/O on very large file systems

• Full data structures like bit maps couldn’t fit in memory -> thousands of 
I/Os

– Divides device space into meta-slab units and manages meta-
slabs
• Given volume can contain hundreds of meta-slabs

– Each meta-slab has associated space map
• Uses counting algorithm

– But records to log file rather than file system
• Log of all block activity, in time order, in counting format

– Meta-slab activity -> load space map into memory in 
balanced-tree structure, indexed  by offset
• Replay log into that structure
• Combine contiguous free blocks into single entry

https://en.wikipedia.org/wiki/ZFS


TRIMing Unused Blocks
• HDDS overwrite in place so need only free list
• Blocks not treated specially when freed

– Keeps its data but without any file pointers to it, 
until overwritten

• Storage devices not allowing overwrite like NVM (non-
volatile memory) suffer badly with same algorithm
– Must be erased before written, erases made in 

large chunks (blocks, composed of pages) and are 
slow

– TRIM is a newer mechanism for the file system to 
inform the NVM storage device that a page is free
• Can be garbage collected or if block is free, now block can 

be erased

https://en.wikipedia.org/wiki/Trim_(computing)

https://en.wikipedia.org/wiki/Trim_(computing)


Efficiency and Performance

• Efficiency dependent on:

– Disk allocation and directory algorithms

– Types of data kept in file’s directory entry

– Pre-allocation or as-needed allocation of 
metadata structures

– Fixed-size or varying-size data structures



Efficiency and Performance (Cont.)

• Performance
– Keeping data and metadata close together
– Buffer cache – separate section of main memory for 

frequently used blocks
– Synchronous writes sometimes requested by apps or 

needed by OS
• No buffering / caching – writes must hit disk before acknowledgement
• Asynchronous writes more common, buffer-able, faster

– Free-behind and read-ahead – techniques to optimize 
sequential access
• a) free-behind technique - free the memory of a block as soon as the next block is 

requested b) read-ahead technique - when a block is requested, read and cache several 
subsequent disk blocks to make use of spatial locality

http://www.cs.uni.edu/~fienup/courses/copy-of-operating-systems/lecture-notes/notes98f-17.lwp/odyframe.htm

http://www.cs.uni.edu/~fienup/courses/copy-of-operating-systems/lecture-notes/notes98f-17.lwp/odyframe.htm


Page Cache

• A page cache caches pages rather than disk 
blocks using virtual memory techniques and 
addresses

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses the 
buffer (disk) cache

• This leads to the figure on next slide



I/O Without a Unified Buffer Cache



Unified Buffer Cache

• A unified buffer cache uses the same page 
cache to cache both memory-mapped pages 
and ordinary file system I/O to avoid double
caching

▪ But which caches get priority, and what 
replacement algorithms to use?



I/O Using a Unified Buffer Cache


