
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 14.5-14.6

File System Implementation 3

Review

• We discussed different ways of allocating blocks for file data

– contiguous allocation in which data blocks for a file are
contiguous

– linked allocation in which the data blocks are “chained”
together, similar to a linked list

– indexed allocation in which one index block points all data
blocks

– hybrid (or combination) of the above such as what is used
in Linux systems.

Performance
• Best method depends on file access type

– Contiguous great for sequential and random access

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous
or linked

• Indexed more complex

– Single block access could require 2 index block reads
then data block read

– Clustering can help improve throughput, reduce CPU
overhead

Free-Space Management

• File system maintains free-space list to
track available blocks/clusters

– (Using term “block” for simplicity)

• Bit vector or bit map (n blocks) …

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Free block number calculation

(number of bits per word) * (number of 0-value words)

+ offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

Free-Space Management (Cont.)

• Bit map requires extra space

– Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

• Easy to get contiguous files

Linked Free Space List on Disk

▪ Linked list (free list)

• Cannot get
contiguous space
easily

• No waste of space

• No need to traverse
the entire list if # free
blocks recorded

Free-Space Management (Cont.)

• Grouping
– Modify linked list to store address of next n-1 free

blocks in first free block, plus a pointer to next
block that contains free-block-pointers

• Counting
– Because space is frequently contiguously used and

freed, with contiguous-allocation allocation,
extents, or clustering
• Keep address of first free block and count of following

free blocks
• Free space list then has entries containing addresses and

counts

Free-Space Management (Cont.)
• Space Maps

– Used in ZFS https://en.wikipedia.org/wiki/ZFS
– Consider meta-data I/O on very large file systems

• Full data structures like bit maps couldn’t fit in memory -> thousands of
I/Os

– Divides device space into meta-slab units and manages meta-
slabs
• Given volume can contain hundreds of meta-slabs

– Each meta-slab has associated space map
• Uses counting algorithm

– But records to log file rather than file system
• Log of all block activity, in time order, in counting format

– Meta-slab activity -> load space map into memory in
balanced-tree structure, indexed by offset
• Replay log into that structure
• Combine contiguous free blocks into single entry

https://en.wikipedia.org/wiki/ZFS

TRIMing Unused Blocks
• HDDS overwrite in place so need only free list
• Blocks not treated specially when freed

– Keeps its data but without any file pointers to it,
until overwritten

• Storage devices not allowing overwrite like NVM (non-
volatile memory) suffer badly with same algorithm
– Must be erased before written, erases made in

large chunks (blocks, composed of pages) and are
slow

– TRIM is a newer mechanism for the file system to
inform the NVM storage device that a page is free
• Can be garbage collected or if block is free, now block can

be erased

https://en.wikipedia.org/wiki/Trim_(computing)

https://en.wikipedia.org/wiki/Trim_(computing)

Efficiency and Performance

• Efficiency dependent on:

– Disk allocation and directory algorithms

– Types of data kept in file’s directory entry

– Pre-allocation or as-needed allocation of
metadata structures

– Fixed-size or varying-size data structures

Efficiency and Performance (Cont.)

• Performance
– Keeping data and metadata close together
– Buffer cache – separate section of main memory for

frequently used blocks
– Synchronous writes sometimes requested by apps or

needed by OS
• No buffering / caching – writes must hit disk before acknowledgement
• Asynchronous writes more common, buffer-able, faster

– Free-behind and read-ahead – techniques to optimize
sequential access
• a) free-behind technique - free the memory of a block as soon as the next block is

requested b) read-ahead technique - when a block is requested, read and cache several
subsequent disk blocks to make use of spatial locality

http://www.cs.uni.edu/~fienup/courses/copy-of-operating-systems/lecture-notes/notes98f-17.lwp/odyframe.htm

http://www.cs.uni.edu/~fienup/courses/copy-of-operating-systems/lecture-notes/notes98f-17.lwp/odyframe.htm

Page Cache

• A page cache caches pages rather than disk
blocks using virtual memory techniques and
addresses

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses the
buffer (disk) cache

• This leads to the figure on next slide

I/O Without a Unified Buffer Cache

Unified Buffer Cache

• A unified buffer cache uses the same page
cache to cache both memory-mapped pages
and ordinary file system I/O to avoid double
caching

▪ But which caches get priority, and what
replacement algorithms to use?

I/O Using a Unified Buffer Cache

