
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 20.7-20.8

Linux File System and I/O

FILE SYSTEM

File Systems

• To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics

• Internally, the kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS)

• The Linux VFS is designed around object-oriented principles
and is composed of four components:
– A set of definitions that define what a file object is

allowed to look like
• The inode object structure represent an individual file
• The file object represents an open file
• The superblock object represents an entire file system
• A dentry object represents an individual directory entry

The Linux ext3 File System

• ext3 is standard on disk file system for Linux

– Uses a mechanism similar to that of BSD Fast
File System (FFS) for locating data blocks
belonging to a specific file

– Supersedes older extfs, ext2 file systems

– Work underway on ext4 adding features like
extents

– Of course, many other file system choices with
Linux systems

The Linux ext3 File System (Cont.)

• The main differences between ext2fs and FFS concern their disk
allocation policies
– In FFS, the disk is allocated to files in blocks of 8Kb, with

blocks being subdivided into fragments of 1Kb to store small
files or partially filled blocks at the end of a file

– ext3 does not use fragments; it performs its allocations in
smaller units
• The default block size on ext3 varies as a function of total size of file

system with support for 1, 2, 4 and 8 KB blocks

– ext3 uses cluster allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation on a block group

– Maintains bit map of free blocks in a block group, searches for
free byte to allocate at least 8 blocks at a time

Ext2fs Block-Allocation Policies

The block numbers of
allocated blocks are
recorded in their
respective inodes.

Journaling

• ext3 implements journaling, with file system updates first
written to a log file in the form of transactions
– Once in log file, considered committed
– Over time, log file transactions replayed over file system

to put changes in place
• On system crash, some transactions might be in journal but

not yet placed into file system
– Must be completed once system recovers
– No other consistency checking is needed after a crash

(much faster than older methods)
• Improves write performance on hard disks by turning

random I/O into sequential I/O

The Linux Proc File System

• The proc file system does not store data, rather, its
contents are computed on demand according to user file
I/O requests

• proc must implement a directory structure, and the file
contents within; it must then define a unique and persistent
inode number for each directory and files it contains
– It uses this inode number to identify just what operation

is required when a user tries to read from a particular
file inode or perform a lookup in a particular directory
inode

– When data is read from one of these files, proc collects
the appropriate information, formats it into text form
and places it into the requesting process’s read buffer

The Linux Proc File System

The proc filesystem is a pseudo-filesystem which
provides an interface to kernel data structures. It is
commonly mounted at /proc. Typically, it is
mounted automatically by the system.
 -- Linux manual page (man proc)

Every process has such a file system that is created when the
process is created. The file system is destroyed after the
process exits.

The Linux Proc File System: Example

After process 2904 was created

The Linux Proc File System: Example

After process 2904 completed.

LINUX INPUT AND OUTPUT

Input and Output

• The Linux device-oriented file system accesses disk storage
through two caches:
– Data is cached in the page cache, which is unified with the

virtual memory system
– Metadata is cached in the buffer cache, a separate cache

indexed by the physical disk block
• Linux splits all devices into three classes:

– Block devices allow random access to completely
independent, fixed size blocks of data

– Character devices include most other devices; they don’t
need to support the functionality of regular files

– Network devices are interfaced via the kernel’s networking
subsystem

Block Devices

• Provide the main interface to all disk devices in a system
• The block buffer cache serves two main purposes:

– it acts as a pool of buffers for active I/O
– it serves as a cache for completed I/O

• The request manager manages the reading and writing of buffer
contents to and from a block device driver

• Kernel 2.6 introduced Completely Fair Queueing (CFQ)
– Now the default scheduler
– Fundamentally different from elevator algorithms
– Maintains set of lists, one for each process by default
– Uses C-SCAN algorithm, with round robin between all

outstanding I/O from all processes
– Four blocks from each process put on at once

Device-Driver Block Structure

SCSI: Small Computer Systems Interface, a standard for I/O devices on PCs

Character Devices

• A device driver which does not offer random access to fixed
blocks of data

• A character device driver must register a set of functions
which implement the driver’s various file I/O operations

• The kernel performs almost no preprocessing of a file read
or write request to a character device, but simply passes on
the request to the device

• The main exception to this rule is the special subset of
character device drivers which implement terminal devices,
for which the kernel maintains a standard interface

Character Devices (Cont.)

• Line discipline is an interpreter for the information from the
terminal device
– The most common line discipline is tty discipline, which glues

the terminal’s data stream onto standard input and output
streams of user’s running processes, allowing processes to
communicate directly with the user’s terminal

– Several processes may be running simultaneously, tty line
discipline responsible for attaching and detaching terminal’s
input and output from various processes connected to it as
processes are suspended or awakened by user

– Other line disciplines also are implemented have nothing to
do with I/O to user process – i.e., PPP and SLIP networking
protocols

