
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook 
authors, as well as L. Felipe Perrone, Joshua Stough, 
and other instructors.
Xiannong Meng, Fall 2021.

Ch 18.1-18.3

Introduction to Virtual Machines



Chapter 18: Virtual Machines

• Overview

• History

• Benefits and Features

• Building Blocks

• Types of Virtual Machines and Their 
Implementations

• Virtualization and Operating-System Components

• Examples



Chapter Objectives

• Explore the history and benefits of virtual 
machines

• Discuss the various virtual machine technologies

• Describe the methods used to implement 
virtualization

• Show the most common hardware features that 
support virtualization and explain how they are 
used by operating-system modules

• Discuss current virtualization research areas



Overview

• Fundamental idea – abstract hardware of a single computer into several 
different execution environments
– Similar to layered approach
– But layer creates virtual system (virtual machine, or VM) on which 

operation systems or applications can run
• Several components

– Host – underlying hardware system
– Virtual machine manager (VMM) or hypervisor – creates and runs 

virtual machines by providing interface that is identical to the host
• (Except in the case of paravirtualization)

– Guest – process provided with virtual copy of the host
• Usually an operating system

• Single physical machine can run multiple operating systems concurrently, 
each in its own virtual machine



Quick Examples of VM

• Oracle VirtualBox: Running Linux on Windows



Quick Examples of VM

• Remote Lab: Running Windows over the web



System Models

Non-virtual machine Virtual machine



Implementation of VMMs

• Vary greatly, with options including:
– Type 0 hypervisors - Hardware-based solutions that provide support 

for virtual machine creation and management via firmware
• IBM LPARs and Oracle LDOMs are examples

– Type 1 hypervisors - Operating-system-like software built to provide 
virtualization
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Type 1 hypervisors – Also includes general-purpose operating 
systems that provide standard functions as well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard operating 
systems but provide VMM features to guest operating systems
• Including VMware Workstation and Fusion, Parallels Desktop, and Oracle 

VirtualBox



Implementation of VMMs (Cont.)

• Other variations include: 
– Paravirtualization - Technique in which the guest 

operating system is modified to work in cooperation 
with the VMM to optimize performance 

– Programming-environment virtualization - VMMs do 
not virtualize real hardware but instead create an 
optimized virtual system
• Used by Oracle Java and Microsoft.Net

– Emulators – Allow applications written for one 
hardware environment to run on a very different 
hardware environment, such as a different type of CPU



Implementation of VMMs (Cont.)

– Application containment - Not virtualization at 
all but rather provides virtualization-like 
features by segregating applications from the 
operating system, making them more secure, 
manageable
• Including Oracle Solaris Zones, BSD Jails, and IBM AIX 

WPARs 

• Much variation due to breadth, depth and 
importance of virtualization in modern computing



History
• First appeared in IBM mainframes in 1972
• Allowed multiple users to share a batch-oriented system
• Formal definition of virtualization helped move it beyond IBM

1. A VMMprovides an environment for programs that is 
essentially identical to the original machine

2. Programs running within that environment show only minor 
performance decreases

3. The VMM is in complete control of system resources
• In late 1990s Intel CPUs fast enough for researchers to try 

virtualizing on general purpose PCs
– Xen and VMware created technologies, still used today
– Virtualization has expanded to many OSes, CPUs, VMMs



Benefits and Features

• Host system protected from VMs, VMs protected from each other
– i.e., A virus less likely to spread
– Sharing is provided via shared file system volume, network 

communication
• Freeze, suspend, running VM

– Then can move or copy somewhere else and resume
– Snapshot of a given state, able to restore back to that state

• Some VMMs allow multiple snapshots per VM

– Clone by creating copy and running both original and copy
• Great for OS research, better system development efficiency
• Run multiple, different OSes on a single machine

– Consolidation, app dev, …



Benefits and Features (Cont.)

• Templating – create an OS + application VM, provide it 
to customers, use it to create multiple instances of 
that combination

• Live migration – move a running VM from one host to 
another!

– No interruption of user access

• All those features taken together -> cloud computing

– Using APIs, programs tell cloud infrastructure 
(servers, networking, storage) to create new guests, 
VMs, virtual desktops



Building Blocks
• Generally difficult to provide an exact duplicate of 

underlying machine
– Especially if only dual-mode operation available on 

CPU
– But getting easier over time as CPU features and 

support for VMM improves
– Most VMMs implement virtual CPU (VCPU) to 

represent state of CPU per guest as guest believes it 
to be
When guest context switched onto CPU by VMM, 

information from VCPU loaded and stored

– Several techniques, as described in next slides



Building Block – Trap and Emulate

• Dual mode CPU means guest executes in user mode

– Kernel runs in kernel mode

– Not safe to let guest kernel run in kernel mode too

– So VM needs two modes – virtual user mode and 
virtual kernel mode
• Both of which run in real user mode

– Actions in guest that usually cause switch to kernel 
mode must cause switch to virtual kernel mode



Trap-and-Emulate (Cont.)

• How does switch from virtual user mode to virtual kernel mode occur?

– Attempting a privileged instruction in user mode causes an error -> trap

– VMM gains control, analyzes error, executes operation as attempted by guest

– Returns control to guest in user mode

– Known as trap-and-emulate

– Most virtualization products use this at least in part

• User mode code in guest runs at same speed as if not a guest

• But kernel mode privilege mode code runs slower due to trap-and-emulate

– Especially a problem when multiple guests running, each needing trap-and-emulate

• CPUs adding hardware support, CPU modes to improve virtualization 
performance



Trap-and-Emulate
Virtualization Implementation



Is Virtualization Supported?
• On Windows, use TaskManager to find out



Is Virtualization Supported?
• On Linux, use /proc/cpuinfo to find out

• grep vmx /proc/cpuinfo

• If vmx is present, virtualization is supported



Building Block – Binary Translation

• Some CPUs don’t have clean separation between 
privileged and nonprivileged instructions

– Earlier Intel x86 CPUs are among them
• Earliest Intel CPU designed for a calculator

– Backward compatibility means difficult to improve

– Consider Intel x86 popf instruction
• Loads CPU flags register from contents of the stack

• If CPU in privileged mode -> all flags replaced

• If CPU in user mode -> on some flags replaced
– No trap is generated



Binary Translation (Cont.)

• Other similar problem instructions we will call special instructions

– Caused trap-and-emulate method considered impossible until 1998

• Binary translation solves the problem

1. Basics are simple, but implementation very complex

2. If guest VCPU is in user mode, guest can run instructions natively

3. If guest VCPU in kernel mode (guest believes it is in kernel mode)

a) VMM examines every instruction guest is about to execute by reading a 
few instructions ahead of program counter

b) Non-special-instructions run natively

c) Special instructions translated into new set of instructions that perform 
equivalent task (for example changing the flags in the VCPU)



Binary Translation (Cont.)

• Implemented by translation of code within VMM
• Code reads native instructions dynamically from guest, on 

demand, generates native binary code that executes in 
place of original code

• Performance of this method would be poor without 
optimizations
– Products like VMware use caching

Translate once, and when guest executes code containing 
special instruction cached translation used instead of 
translating again

Testing showed booting Windows XP as guest caused 
950,000 translations, at 3 microseconds each, or 3 second (5 
%) slowdown over native



Binary Translation
Virtualization Implementation



Nested Page Tables
• Memory management is another general challenge to VMM 

implementations
• How can VMM keep page-table state for both guests believing they 

control the page tables and VMM that does control the tables?
• Common method (for trap-and-emulate and binary translation) is nested 

page tables (NPTs) 
– Each guest maintains page tables to translate virtual to physical 

addresses
– VMM maintains per guest NPTs to represent guest’s page-table state

• Just as VCPU stores guest CPU state

– When guest on CPU -> VMM makes that guest’s NPTs the active 
system page tables

– Guest tries to change page table -> VMM makes equivalent change 
to NPTs and its own page tables

– Can cause many more TLB misses -> much slower performance


