CSCI315 — Operating Systems Design

Department of Computer Science
Bucknell University

Introduction to Virtual Machines

Ch 18.1-18.3
This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,

and other instructors.
Xiannong Meng, Fall 2021.

Chapter 18: Virtual Machines

Overview

History

Benefits and Features
Building Blocks

Types of Virtual Machines and Their
Implementations

Virtualization and Operating-System Components
Examples

Chapter Objectives

Explore the history and benefits of virtual
machines

Discuss the various virtual machine technologies

Describe the methods used to implement
virtualization

Show the most common hardware features that
support virtualization and explain how they are
used by operating-system modules

Discuss current virtualization research areas

Overview

 Fundamental idea — abstract hardware of a single computer into several
different execution environments
— Similar to layered approach
— But layer creates virtual system (virtual machine, or VM) on which
operation systems or applications can run

* Several components
— Host — underlying hardware system

— Virtual machine manager (VMM) or hypervisor — creates and runs
virtual machines by providing interface that is identical to the host

* (Except in the case of paravirtualization)
— Guest — process provided with virtual copy of the host
e Usually an operating system
* Single physical machine can run multiple operating systems concurrently,
each in its own virtual machine

Quick Examples of VM

* Oracle VirtualBox: Running Linux on Windows

¥ Oracle VM VirtualBox Manager - m] X
File Machine Help
EHU Tools {“} Lo lf;>, Activities (=) Terminal ~ Nov 30 07:53 & O -
uad New Settings Discard Start
z_:’ a_ = ceneral =] preview 6 meng@meng-VirtualBox: ~/test/Lab05/solution QO
Powered OFf :
©] 2 o g Systems Lo B0 drwxrwx--- 2 meng meng 4896 Nov 23 2020
[system -rW-r--- 1 meng meng 67486 Nov 23 2020 Doxyfile
drwxrwx--- 2 meng meng 4096 Nov 23 2020
Base Memory: 1024 MB .
BootOrder: Optical, Floppy, Hard Disk ~FW-r--- 1 meng meng 1511 Nov 23 20820 Makefile
Acceleration: WT-x/AMD-V, Nested Paging, KVM Paravirtualization erXrWX' 2 meng meng 4096 Nov 23 2020
=) pisplay -rW-rw---- 1 meng meng 14421 Nov 23 2020 output.txt
ideo Memory: 158 - -rW-rw---- 1 meng meng 0 Nov 23 2020 out.txt
SL?HT;SDCE”S::TDD;‘;;W eva drwxrwx--- 2 meng meng 4896 Nov 23 2020
Recording: Diszbled B $ 1ls -1 Labe5/solution/src
Storage amn total 28
Controler: I0E a -rw-rw---- 1 meng meng 1524 Mov 23 2028 adt-test.c
mEWwagMﬁhn. DumﬂDWﬁEww - meng meng 3562 Nov 23 2020 circular-list.c
o seconcary Master: - [Optcal Drive] Host Drive meng meng 1140 Nov 23 2020 circular-list.c.orig
SATA Port 0: ubuntu-meng.vei (Normal, 10.00 GB) S meng meng 3621 Nov 23 2020 circular-list.c.sav
fn Audio meng meng 5266 Nov 23 2020 prodcons.c
HostDriver: Windows DirectSound meng meng 2735 Nov 23 2020 predcons.c.orig
Controller: 1CH ACS7 $ cd Lab@s/solution/
EF Network S 1s
Adapter 1: Intel PRO/1000 MT Desktop (NAT) Doxyfile Makefile output.txt out.txt
5 uss 8 $ make

gcc -I ./include -std=gnu99 -Wall -c .[srcj/circular-list.c -o .fobj/circula
r-list.o

gcc -I ./include -std=gnu99 -Wall -c srcfadt-test.c -o obj/adt-test.o

gcc -I ./include -std=gnu99 -Wall .Jobj/circular-list.o ./obj/adt-test.o -0
./binfadt-test -1lpthread

gcc -I ./include -std=gnu99 -Wall -c src/prodcons.c -o obj/prodcons.o

gcc -I ./include -std=gnu99 -Wall ./obj/prodcons.o .fobj/circular-list.o -o
./binfprodcons -lpthread

1= @R 8] @ @] right ctrl

Quick Examples of VM

 Remote Lab: Running Windows over the web

|_I'FAQ x|c,labsx|0risc=x|Lacti-x|EProc_x|LM X|Llndi-x|

T wnoral 7 nPrar — i iemmoLile Se N
0 & vd dmanager'bUCkne"'Eduma‘a 0g-po tal/uizisOnPremise=try @ amnc x | £ FAQ x | & labs x | @ riscv x | & activ x | B Prog x | & My[x | & Indiv x | & Alun x | [F Buck x | & dep: x | f@ €5C1 x | & Alun x | & Stuc
« C {} & bu-remotelab.bucknell.edu/portal/webclient/index htmli?desktopld=cn%3Dgpu-desktop-2021,0u%3Dapplications,dc%3Dvdi,dc%3Dvmware,dc%3Dint&desktop

¥

Recycle Bin

& Back

< | 40-vm-intro

5]

bome e i
Desktop 2021 « v o » ThisPC » linux-cs315.5 (\unixspace) (W:) » F2021 » meng » lectures » 40-vm-intro v O Search 40-vm-intro
Name - Date modificd Trpe Size
G S Quick access
Harizon o 2 ' a2
oriz

40-introduction-VM
) 40-introduction-VM

Adobe Acrobat D.
A [Desktop

Microsoft PowerP
— £} Documents ¥ 40-introduction-YM-online-10f2 Microsoft PowerP.

l J iy —— 1 - ¥ Downloads ¥ 40-introduction-VM-online-20f2 Microsoft PowerP.
-~ g ot T s ‘s = Pictures & ubuntu PNG image
[This PC & virtual-box PNG image
Fircfox
¥ Network

Chrome

“»

Microsoft
Edge

System Models

jprocesses

.

kernel

hardware

e

programming/
interface

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3
virtual machine
manager
hardware

Non-virtual machine

Virtual machine

Implementation of VMMs

e Vary greatly, with options including:

Type 0 hypervisors - Hardware-based solutions that provide support
for virtual machine creation and management via firmware

* |IBM LPARs and Oracle LDOMs are examples
Type 1 hypervisors - Operating-system-like software built to provide
virtualization

* Including VMware ESX, Joyent SmartOS, and Citrix XenServer
Type 1 hypervisors — Also includes general-purpose operating
systems that provide standard functions as well as VMM functions

* Including Microsoft Windows Server with HyperV and RedHat Linux with KVM
Type 2 hypervisors - Applications that run on standard operating
systems but provide VMM features to guest operating systems

* Including VMware Workstation and Fusion, Parallels Desktop, and Oracle
VirtualBox

Implementation of VMMs (Cont.)

e (Qther variations include:

— Paravirtualization - Technique in which the guest
operating system is modified to work in cooperation
with the VMM to optimize performance

— Programming-environment virtualization - VMMs do
not virtualize real hardware but instead create an
optimized virtual system

* Used by Oracle Java and Microsoft.Net
— Emulators — Allow applications written for one

hardware environment to run on a very different
hardware environment, such as a different type of CPU

Implementation of VMMs (Cont.)

— Application containment - Not virtualization at
all but rather provides virtualization-like
features by segregating applications from the
operating system, making them more secure,
manageable

* Including Oracle Solaris Zones, BSD Jails, and IBM AlX
WPARSs

* Much variation due to breadth, depth and
importance of virtualization in modern computing

History

First appeared in IBM mainframes in 1972
Allowed multiple users to share a batch-oriented system
Formal definition of virtualization helped move it beyond IBM

1. AVMMprovides an environment for programs that is
essentially identical to the original machine

2. Programs running within that environment show only minor
performance decreases

3. The VMMis in complete control of system resources

In late 1990s Intel CPUs fast enough for researchers to try
virtualizing on general purpose PCs

— Xen and VMware created technologies, still used today
— Virtualization has expanded to many OSes, CPUs, VMMs

Benefits and Features

Host system protected from VMs, VMs protected from each other
— i.e., Avirus less likely to spread

— Sharing is provided via shared file system volume, network
communication

Freeze, suspend, running VM
— Then can move or copy somewhere else and resume

— Snapshot of a given state, able to restore back to that state
* Some VMMs allow multiple snapshots per VM

— Clone by creating copy and running both original and copy
Great for OS research, better system development efficiency
Run multiple, different OSes on a single machine

— Consolidation, app dey, ...

Benefits and Features (Cont.)

* Templating — create an OS + application VM, provide it
to customers, use it to create multiple instances of
that combination

* Live migration — move a running VM from one host to
another!

— No interruption of user access
e All those features taken together -> cloud computing

— Using APIs, programs tell cloud infrastructure

(servers, networking, storage) to create new guests,
VMs, virtual desktops

Building Blocks

* Generally difficult to provide an exact duplicate of
underlying machine

— Especially if only dual-mode operation available on
CPU

— But getting easier over time as CPU features and
support for VMM improves

— Most VMMs implement virtual CPU (VCPU) to
represent state of CPU per guest as guest believes it
to be

» When guest context switched onto CPU by VMM,
information from VCPU loaded and stored

— Several techniques, as described in next slides

Building Block — Trap and Emulate

 Dual mode CPU means guest executes in user mode
— Kernel runs in kernel mode
— Not safe to let guest kernel run in kernel mode too

— So VM needs two modes — virtual user mode and
virtual kernel mode

e Both of which run in real user mode

— Actions in guest that usually cause switch to kernel
mode must cause switch to virtual kernel mode

Trap-and-Emulate (Cont.)

How does switch from virtual user mode to virtual kernel mode occur?

Attempting a privileged instruction in user mode causes an error -> trap
VMM gains control, analyzes error, executes operation as attempted by guest
Returns control to guest in user mode

Known as trap-and-emulate

Most virtualization products use this at least in part

User mode code in guest runs at same speed as if not a guest

But kernel mode privilege mode code runs slower due to trap-and-emulate

Especially a problem when multiple guests running, each needing trap-and-emulate

CPUs adding hardware support, CPU modes to improve virtualization
performance

Trap-and-Emulate
Virtualization Implementation

User Processes

Privileged Instruction

Guest : T User Mode
Operating
= System 3
Q —r
© c
- =]
VMM l ‘ Kernel Mode
Emulate Action — Update VCPU

VMM

Is Virtualization Supported?
On Windows, use TaskManager to find out

Processes Peformance App history Startup Users Details Services

Ethernet

1% 3.13 GHz

290 GHz
231 2999 1573
tove

13:11:11:50

Is Virtualization Supported?
* On Linux, use /proc/cpuinfo to find out

e grep vmx /proc/cpuinfo
* If vmx is present, virtualization is supported

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
tm pbe syscall nx pdpelgb rdtscp lm constant tsc art arch_perfmon pebs bts rep good nopl xtopology nonstop tsc aperfmperf ea
pni pclmulqdq dtes64 monitor ds _cpl wvmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid ssed 1 ssed4 2 x2apic movbe popcnt tsc
ne timer aes xsave avx fl6c rdrand lahf lm abm 3dnowprefetch epb invpcid single intel pt ssbd ibrs ibpb stibp tpr_shadow vnm
riority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt xsaveopt xsavec
1 dtherm ida arat pln pts hwp hwp notify hwp act window hwp epp spec ctrl intel stibp flush 11d

Building Block — Binary Translation

« Some CPUs don’t have clean separation between
privileged and nonprivileged instructions

— Earlier Intel x86 CPUs are among them
* Earliest Intel CPU designed for a calculator

— Backward compatibility means difficult to improve

— Consider Intel x86 pop£ instruction
* Loads CPU flags register from contents of the stack
e If CPU in privileged mode -> all flags replaced

e If CPU in user mode -> on some flags replaced
— No trap is generated

Binary Translation (Cont.)

e Other similar problem instructions we will call special instructions
— Caused trap-and-emulate method considered impossible until 1998
* Binary translation solves the problem
1. Basics are simple, but implementation very complex
2. If guest VCPU is in user mode, guest can run instructions natively

3. If guest VCPU in kernel mode (guest believes it is in kernel mode)

a) VMM examines every instruction guest is about to execute by reading a
few instructions ahead of program counter

b) Non-special-instructions run natively

c) Special instructions translated into new set of instructions that perform
equivalent task (for example changing the flags in the VCPU)

Binary Translation (Cont.)

Implemented by translation of code within VMM

Code reads native instructions dynamically from guest, on
demand, generates native binary code that executes in
place of original code

Performance of this method would be poor without
optimizations
— Products like VMware use caching

» Translate once, and when guest executes code containing
special instruction cached translation used instead of
translating again

» Testing showed booting Windows XP as guest caused
950,000 translations, at 3 microseconds each, or 3 second (5
%) slowdown over native

Binary Translation
Virtualization Implementation

User Processes

(VMM Reads Instructions)

Special Instruction

¥t Operating T User Mode
System -
c
S
e . Kernel Mode
Translate ‘
Execute Translation UPdate VCPU

VMM

Nested Page Tables

Memory management is another general challenge to VMM
implementations

How can VMM keep page-table state for both guests believing they
control the page tables and VMM that does control the tables?

Common method (for trap-and-emulate and binary translation) is nested
page tables (NPTs)
— Each guest maintains page tables to translate virtual to physical
addresses
— VMM maintains per guest NPTs to represent guest’s page-table state
* Just as VCPU stores guest CPU state

— When guest on CPU -> VMM makes that guest’s NPTs the active
system page tables

— Guest tries to change page table -> VMM makes equivalent change
to NPTs and its own page tables

— Can cause many more TLB misses -> much slower performance

