1. Consider a system with processes P_1, P_2, and P_3, one instance of resource R_1, and two instances of resource R_2. For the following two cases, draw the resource allocation graph, state if a deadlock is involved, and explain why or why not. Assume that processes will hold resources until they terminate, and that they must receive all requested resources in order to complete their processing:

- **Case 1**, in which:
 - P_1 is waiting for instances of R_1 and R_2.
 - P_2 holds instances of R_1 and R_2.
 - P_3 is waiting for an instance of R_1 and holds an instance of R_2.

- **Case 2**, in which:
 - P_1 holds an instance of R_1 and is waiting for an instance of R_2.
 - P_2 is waiting for an instance of R_1 and holds an instance of R_2.
 - P_3 is waiting for an instance of R_1 and holds an instance of R_2.

2. Problem 7.11 on p. 342 of your text (it was Problem 7.2 on p. 299 in the previous edition).

3. The following problem uses the resource-allocation-graph algorithm for deadlock avoidance from Section 7.5.2 of the course text. Note that it uses a variant of the resource allocation graph that includes *claim edges*. Consider a system with a single instance each of four resources R_1, R_2, R_3, and R_4. Three processes are running on the system:

- P_1, which may request resources R_1, R_3, and R_4;
- P_2, which may request resources R_2, R_3, and R_4; and
- P_3, which may request resources R_1, R_2, and R_4.

Consider the following sequence of events:

- P_2 requests R_3
- P_1 requests R_1
- P_3 requests R_4
- P_2 requests R_2
- P_1 **releases** R_1
- P_3 requests R_2
Indicate which of the requests are allowed by the algorithm, and which are denied. Draw the resource allocation graph (including claim edges) after each event; if an event involves a request, your drawing should show the graph after the event is either allowed or denied.

4. Problem 7.17 on p. 343 of the course text (it was Problem 7.12 on p. 301 in the previous edition).