
CSCI 315 Lab 2 Exercise

February 4, 2010

Last week you investigated the properties of the fork command and found
that when a process forks a child, the child process starts out with a copy of
the parent’s environment (code and data). You should also have learned that
once the child is created, then there is no communication with its parent. This
week’s lab is in two parts. First, you will investigate how the fork command
affects the child in regards to file access. Second, you will investigate the use of
the pipe command for communication between processes.

Note: Files are also available in ∼cs315/Labs10/Lab02.

References: UNIX man pages for the fork and pipe and the pipes hand-
out.

Lab Problems
Write your answers in a hand-in file as you go through the exercises. Copy-and-
paste code and output where possible.

Fork

1. Copy this code to a file (call it fork.cc). In addition, copy the file text.txt
to your directory to use as an input file. [Note: You should be able
to use the copy-and-paste method to copy the above files to your editor
window.] Compile and run the program using text.txt as the command-
line argument.

2. Modify fork.cc so that the program will fork two children. Have each
child call ReadFile with a unique letter identifier and the same file descrip-
tor. Adjust the delay loop to insure that the siblings read no more than
10-20 characters in a time-slice. Include your modified program in
your handin file. What conclusion about how the two programs
access the file do you draw from the output of the program?
Write your answer in the handin file along with enough of the
output to make your point (e.g., show 2 turns for each process).

3. Modify the program so that one sibling closes the file after about 20 char-
acters are read. What is the effect on the other process? Include
your answer in the handin file.

4. Modify the program so that the file is opened in ReadFile rather than in
the parent code. In the handin file, include the new version of your
code. Run your program and explain what happens in the light
of the output. Contrast this with the results of the previous
experiments.

1

http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/pipes.pdf
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/pipes.pdf
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/fork.cc
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/text.txt


Pipes

1. This program creates two sibling processes; copy it to a file (call it pipes.cc).
You are to use this program as a base: be sure to read the pipes handout
and study the first three diagrams and the accompanying programs. Add
code to pipes.cc to create a pipe from the first child to the second.
The siblings should do the following: the first child should write a charac-
ter string (your name) one character at a time to the pipe. The first child
will then generate an end-of-file (EOF) on the pipe by closing the pipe.
The second child should read the characters from the pipe and print them
to the screen until the EOF is read. The following hints will be helpful:

• The read() and write() operations both take the following argu-
ments:
(a) a file descriptor (type int; see the pipes handout);
(b) a pointer to a char object (type char*); this can indicate either

a single character or a string (you’ll want the former in this
program); and

(c) the number of bytes to read or write.
• Since you’ll be passing multiple characters, you’ll need to put the
read() and write() calls in a loop. The termination of the write()
loop is easy. The read() loop should terminate when EOF is encoun-
tered. The read() operation returns a positive value if a character
is successfully read, and 0 when it fails to read because of the EOF.

• Open the pipes in the correct place relative to the fork() calls; re-
member that they are a common resource to both children.

• In each process (parent and both children) close the ends of the
pipes that will not be used as the handout describes. Remember
that you need to close the write end of the pipe in every process
where it is open for the EOF to be generated.

Get the program working and demonstrate that it works.

2. Modify your program so that two pipes are used in the following way:
The first child writes to the second child via the first pipe (no change
here). The second child reads characters from that first pipe, writes them
to the screen, and then converts them to upper case and writes them to
the second pipe. When done with its original task, the first child reads
the data from the second pipe and displays the results.
Note that each pipe needs a pair of pipe IDs (an integer array of size two).
Also note that when the job is done, all pipes have to be closed or the
receiver will think more would be coming from the open pipe. Important:
remember that the parent process also has access to the pipe, so you will
need to close both ends in the parent after it has started both children.
Copy your output and your revised code into your handin file.

3. If you complete the preceding exercises before lab is over, begin work
on the homework assignment. It involves using pipes and cooperating
processes to solve Conway’s problem: read a text-file and print it out in
lines of 25 characters after squeezing out redundant spaces, which include
tabs and new-line characters. Note that the homework assignment is to
be handed in separately.

Hand in Hand in the answers and code you’ve included in your handin file by
next Monday.

2

http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/pipes.cc
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/hw01.pdf

