(CSCI 315 Lab 3 Exercise

February 11, 2010

Objectives: In this lab you will work with the Java language and its threads
class. A thread is similar in concept to a process and in this lab you will learn
about some of the differences.

References: Sun’s Java Tutorial on threads.

There are four Java classes that consitute the first example Java program of
this lab. Copy the following files to your space (files are also available in the
directory ~cs315/Labs10/Lab03): Client.javal Server.java, and |Share.java. You
are to write the fourth class yourself — call it Thing.java. The Thing class
should be public, contain a single private integer variable (call it Value) that is
set to zero by the constructor, and three public methods:

e int getValue(): This method returns the value of Value.

e void setValue(int): This method sets Value to the value of the integer
parameter.

e String toString(): return a String object containing the value of Value,
as shown below:

Value = 25

Lab Problems: For problems 1 and 2 below, write your comparisons,
explanations, and answers to ALL questions into your hand-in file.

1. Consider the Java program Share.

(a) Run the program. How does the output differ from what you would
expect from a program based on creating processes rather than threads?
Assuming the same interleaving of execution, what would you expect
the output to be if processes had been forked, rather than threads
started?

(b) If the calls to start () were replaced by fork () calls, how many times
would you expect the ‘Parent is Done!’ message to be printed
assuming no calls to exit () are made by the children?


http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Client.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Server.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Share.java

(¢) Does the Share program mimic executing the children process with
or without the ‘&’ option? Explain based on the output.

(d) Add the following code segment to Share.java just after the call
‘client.start()”:

try { server.join(Q); }
catch (InterruptedException e) {}

Explain the effect on the output of the program. Then add client.join()
within the try block after the server.join(). Explain the result-
ing effect.

2. Copy the files Adder. java, Sub.java, Parent.javal to your working di-
rectory, along with the file Thing.java that you wrote. Consider the
program determined by these files.

(a) Examine the program and determine what answer should be printed.
Explain.

(b) Add the following line to Sub.java just before the line that starts
“T.setValue(v)”:

yield();

This causes the current thread to yield, allowing another thread of
the same priority to run. Note that the scheduling algorithm picks
a thread from the set of runnable threads with the same priority;
this includes the thread that just yielded. (You can look up the
yield () method in the Thread class documentation here to see what
it does, though the description is not very detailed. Just find the class
name in the list on the lower left and click.) Recompile and run the
resulting Parent several times. Compare your results to those of the
previous problem and explain why there is or is not a discrepency.

(¢) Modify the Parent program so that Sub starts first rather than Adder.
Be sure to run Parent several times. Compare your results to those
of the previous two problems and explain why there is or is not a
discrepency.

(d) What conclusion do you draw from these two problems about threads
modifying shared data (objects)?

3. Solve the Conway problem from last week using Java threads. Hint: You
can base your answer on last week’s solution, using the MessageQueue class
discussed in Chapter 4 of the text and demonstrated in lecture. We’ve
provided code files for the Java implementation of the producer/consumer
problem (these are in the subdirectory ProdCons): MessageQueue. javal
Producer. java, Consumer. java, and Server.java. They will be useful
as references.

To solve Conway’s problem we suggest you create three Thread classes (a
reader class, a compressor class, and a printer class) to do the work and


http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Adder.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Sub.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/Parent.java
http://java.sun.com/javase/6/docs/api
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/MessageQueue.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/Producer.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/Consumer.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/Server.java

a main class to set everything in motion. Use MessageQueue objects in
place of the pipes in last weeks solution. To help you get started we have
prepared partial implementations of two of the class files you will need:
Conway . javal, which contains the main class, and Reader. javal which is
obviously the reader class.

Here are some hints and advice:

e Reader: In the file Reader. java there are comments indicating what
is required for completion.
You want to put characters in the message queue, but the queue re-
quires objects, not primitive values. Thus you must use the Character
wrapper class.

e Conway: This file should be completed in the obvious way: create the
necessary message queues and threads, and then start those threads.

e Compressor: This class will serve as both a consumer and a producer.
Draw your inspiration from Consumer. java and Producer. java.

In older Java implementations you would have needed to use the
Character method charValue (), which returns the char value con-
tained in the object. Java 6 should provide auto-boxing, which allows
you to operate with the Character object as if it were a char vari-
able.

e Printer: This class will simply serve as a consumer. Part of your
work on Compressor can be used as a model for what you need to
do here.

For your convenience here is a copy of the text.txt input file you used
in the previous lab. You should use it to test your program. The output
should be identical to what you got from last week’s lab.

Hand in: Hand in the answers for problems 1 and 2 along with a listing of
the classes for the Conway problem and the output from a sample execution by
next Monday. For the Conway problem, put the class listing into a single file
and then print that file with a2ps.


http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/Conway.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab03/ProdCons/Reader.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab02/text.txt

