
CSCI 315 Lab 5 Exercise

February 24, 2010

Objectives: This lab gives you the chance to experiment with semaphores and
monitors in the context of classic concurrent programming problems such as
Bounded Buffer and Readers and Writers.

References: Sun’s Java Tutorial on threads: synchronization
Silberschatz, Galvin & Gagne: Chapter 6

Pre-Lab: Read through Section 6.5 of your text. Copy the file Semaphore.java
and examine the code. The keyword synchronized makes sure that the acquire()
and release() methods are atomic. As usual, the file Semaphore.java is also
in the directory ∼cs315/Labs10/Lab05.

There is nothing to hand in for the prelab. However, lab will be easier
and go faster if you do the reading and look at the code.

You should also review Sections 6.6.1 (a semaphore solution to the bounded
buffer producer-consumer problem) and 6.8 through 6.8.3 (a solution to the
readers-writers problem using Java synchronization) before the start of lab.
Bring your text to lab.

Problems: In each of the following exercises, save and print a copy of your
solution as requested. Be sure to label each solution with the problem
it is for! Hand in answers to the questions where instructed to.

A. Copy the following files for the Bounded Buffer Producers and Consumers
problem to your Lab 5 directory: Server.java, Producer.java, Consumer.java,
and BoundedBuffer.java. They are also available in the directory
∼cs315/Labs10/Lab05/ProdCons.

Remember that there are two kinds of problems that can occur when
concurrent threads cooperate: race conditions and synchronization. In
the problems that follow there may be bits of code added so that only
one problem will appear at one time. When this occurs you will be told.
Complete the following activities:

1. Compile and run the program (main() is in Server.java). Let the
program run long enough to observe a problem. Focus on the changes

1

http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/Semaphore.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ProdCons/Server.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ProdCons/Producer.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ProdCons/Consumer.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ProdCons/BoundedBuffer.java


to the value count. What do you see? Look at the code to determine
what’s going wrong. Hand in answers to the following ques-
tions: What causes the error to occur? Does this correspond to a
problem that can occur in a real system?
Notice that the yield loop at the beginning of the methods enter
and remove in BoundedBuffer.java are meant to prevent one kind
of problem from occurring. Do you see which kind?

2. Using the Semaphore class from the prelab, fix the problem in
BoundedBuffer.java by using a binary (mutual exclusion) semaphore.
What is the initial value of such a semaphore? Add only this one
semaphore at this point. Make sure that the System.out state-
ment at the end of each method is inside of the critical section.
In your hand-in file, include a listing of your corrected
BoundedBuffer.java file showing your solution (be sure to label
this code with the problem it solves). Be sure to test your solu-
tion to convince yourself that the problem seen earlier doesn’t occur
anymore.

3. Now that the race condition is taken care of we will expose the
other problem. Carry out the following modifications to your cur-
rent BoundedBuffer.java code (that is, the code that solves the
previous problem).

(a) Comment out the yield loop at the beginning of the method
enter.

(b) Modify Server to launch three Producer threads. Make sure
you give them distinct names so you can distinguish them in the
output.

(c) Add a buffer overflow test to BoundedBuffer’s enter() method
immediately after the code that increments count. Print a “Buffer
Overflow” message if (and only if) count exceeds BUFFER SIZE.

Now compile and run the program. You may have to let it run for
a while; just watch for the “Buffer Overflow” message. Include an
answer to the following question in your hand-in file: What
occurs and why?
Do the same thing now for the method remove() (the message here
should be “Buffer Underflow”) and test the program to make sure it
behaves as you expect. You don’t have to hand in this part.

4. Correct the problem the previous changes have exposed by adding
synchronization (counting) semaphores to insure that overflow and
underflow don’t occur. Hand in a listing (i.e., a printout) of your
corrected BoundedBuffer.java file. Again, be sure to label the code
in your hand-in file.

5. Modify Server.java so that it creates two Consumer threads and
then run the program to see that the race condition and synchro-

2



nization problems have been solved. Hand in a page or so of your
output to demonstrate that things don’t get messed up.

B. Create a new subdirectory in which to work on this part of the lab. Copy
into that directory the following files for the critical section problem:
Server.java, Worker1.java, and Worker2.java (the files are also in
∼cs315/Labs10/Lab05/Semas). You will also want to use the semaphore
class from the previous part: Copy its .java file into the new directory
as well.

Complete the following activities:

1. Compile and run the programs as is (the main method is in Server.java).
Let the program run until it generates 15-20 lines of output. Consider
the output in light of the comments in the worker code indicating the
existence of critical sections. If there seems to be a problem describe
the problem and how you deduce it from the output. Hand in the
output and your answer.

2. Now make appropriate use of the semaphore passed to the workers
to solve the problem just discovered. Run the resulting program and
(in your hand-in file) explain how the output seems to indicate a
solution.

3. Find three different ways to create a deadlock among the workers
by modifying the semaphore or its use (see Section 6.7 of your text).
The ways should be distinct. Causing a problem in one of the workers,
then causing a symmetric problem in the other worker, will not count
as different solutions. For each answer, turn in your code for the
worker classes and the output that shows a deadlock.

C. In this part of the lab you will experiment with a solution to the readers-
writers problem to see what properties the solution seems to have (see
Section 6.6.2 of the course text for discussion of the problem and relevant
code). Then you will re-implement the solution using the Java synchro-
nization facility. Again you can find information about this Java feature
in Section 6.8.3 of the text.

Before getting started create a new subdirectory in which to work on this
part of the lab. Copy into that directory the following files for the critical
section problem: Server.java, Database.java, Reader.java, and Writer.java
(also in ∼cs315/Labs10/Lab05/ReaderWriter). You will also want to use
the semaphore class from the previous part; copy its .java file into the
new directory as well.
Use this code to carry out the following activities:

1. The program code you copied contains a semaphore solution to the
readers-writers problem. You are to run the program and let a couple
of screens worth of output accumulate. Can you identify a problem
with the solution? Does it seem to provide protected access to the

3

http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/Semas/Server.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/Semas/Worker1.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/Semas/Worker2.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ReaderWriter/Server.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ReaderWriter/Database.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ReaderWriter/Reader.java
http://www.eg.bucknell.edu/~cs315/Spring10/labs/lab05/ReaderWriter/Writer.java


database? Does it seem to provide fair access to the database? Does
increasing the number of writers change the situation? Justify your
answers by refering to the output, and include them in your hand-
in file.

2. Java provides a synchronization facility to manage process syn-
chronization without using the semaphores. Read the course text
about the subject and the code example.
Create a new directory and copy into it your .java files. Work in this
new directory to produce a new solution to the problem by modifying
the Database class to use the Java synchronization. (Note that
you should not copy out the code from your text; the implementa-
tion differs from the code you have. Rather, you should use it as a
model to change your Database class.) When this is working run the
resulting program and answer the questions of the previous part in
your hand-in file. Contrast the output from this version with that
from the semaphore solution.

Hand in: Hand in your code and answers and/or discussions by 5 p.m. next
Monday.

4


