CSCI 315 Lab 6 Exercise

March 8, 2010

Objectives: In this lab you will work again with semaphores and monitors.
In particular, you will use semaphores to develop two solutions to the dining
philosopher’s problem and thus gain a better understanding of resource alloca-
tion problems such as deadlock, starvation, etc.

Prelab: It is important that you read Section 6.6.3 of your text about the
Dining Philosophers Problem before you come to lab. In this problem, five
philosophers are sitting around a circular table. They spend their time alter-
nating between thinking and eating. The problem comes in how to allocate the
eating utensils to the philosophers (there are 5 utensils and each philosopher
needs two to eat).

For the prelab assignment, you are to write a Java program that simulates the
unconstrained version of this problem, i.e., a situation in which the philosophers
use no utensils as in a pie-eating contest. You need to write two classes:

e A Philosopher class. Philosopher objects will be run as threads. Each
object has one integer data member that keeps track of which philosopher
it is; this data member stores the number of the Philosopher. The value
is passed as an argument to the constructor. The class should contain a
method similar to the napping() method used in parts of Lab 5 (e.g., in
the BoundedBuffer class of the producer-consumer exercise). This method
will take an integer parameter t, and cause the thread to sleep for a
random amount of time between 0 and t seconds. The run() method of
the Philosopher class should consist of a loop that repeats the following
actions:

— Prints a message that Philosopher ¢ is thinking.
— Calls the napping () function with argument 2.

— Prints a message that Philosopher ¢ is hungry.

Prints a message that Philosopher i is starting to eat.

Calls the napping() function with argument 1.

— Prints a message that Philosopher i is done eating.

e A Dining class. This class will declare and start five Philosopher threads
numbered 0 through 4. Note that if you declare an array of Philosopher
objects, you can simplify your code a bit by using a loop to start each
Philosopher thread in turn.

Write the Java code for this problem, and run it briefly to test it. While I
am not going to require you to hand this code in at the start of lab, you will find
that you may have difficulty in completing the exercises during the lab period
if you do not write this code prior to lab.



Problems:

1. Dining Philosophers - A Resource Restriction: Before you start,
here is some advice: For each of the exercises below, you should create a
new directory for the code of that solution. This will make it possible to
reference code from a previous solution.

The Dining Philosophers problem in its standard form is a resource al-
location problem. As in the version you implemented in the prelab, it
consists of five philosophers sitting around a table, thinking and eating.
However, to make it more interesting, our philosophers are going to be
eating with chopsticks. Being philosophers, they are not nearly as well-
paid as computer scientists, and so can only afford five chopsticks. One
of these chopsticks is placed between each pair of philosophers around the
table. To eat, a philosopher must have two chopsticks: the one to his or
her left, and the one to his or her right. Note that this means that it is
not possible for two neighboring philosophers to eat at the same time.

Implement a solution using the Semaphore class from last lab. In par-
ticular, implement each chopstick as a mutual exclusion semaphore; the
Philosopher thread that successfully passes through any such semaphore
is assumed to have picked up the corresponding chopstick. A Philosopher
must pick up both chopsticks in order to be able to eat. This means that
you can think of the “eating” section (printing the message indicating that
eating has begun, the call to napping() that simulates the eating time,
and the message indicating that eating is finished) as the critical section
of the Philosopher code.

Your implementation should follow the following guidelines, which are
consistent with the solution in the text:

e You should declare an array chopsticks[] of five Semaphore objects
in the Dining class. Initialize each entry of chopsticks[] with a
mutual exclusion (mutex) Semaphore.

e Modify the Philosopher class so that it has a data member that
holds an array of Semaphore objects. The chopsticks[] array de-
clared in Dining will be passed in as an argument to the constructor
and assigned to this data member.

e Include acquire() and release() calls in the Philosopher run()
method to simulate picking up and putting down chopsticks. You
should use the following scheme for numbering the chopsticks: the
chopstick to the left of Philosopher i is numbered ¢, while the chop-
stick to the right is numbered (i+1)(mod5) (remember that Philoso-
pher 0 is to the right of Philosopher 4).

Compile and run the resulting program. You should observe that no two
consecutive philosophers are eating at the same time. Hand in your
revised code, a test run of this program, and your answers to
the following questions (be sure to number your answers here and in
later problems with the number of the exercise): Do you observe any
problems when your program runs? Based on the code, what problems
could occur?

2. Dining Philosophers with Deadlock: The standard solution can po-
tentially deadlock. You will try to simulate the deadlock problem in this
exercise. Look closely at your code. Where can a deadlock problem oc-
cur? Remember that deadlock involves an actual sequence of events (as



opposed to some static sequence of statements in the code). As in last lab,
you will insert calls to napping() in your Philosopher code to encourage
deadlock to occur. Experiment with where to insert the napping() call
and reasonable nap times until you get test runs that deadlock. Add a
message after each acquire() call saying “Philosopher ¢ picking up chop-
stick 57, and one after each release () saying “Philosopher ¢ putting down
chopstick j” to help you see what is happening.

Note: Once you can cause deadlock to happen, it’s a good idea to run
the program a number of times to see what happens. With a good choice
of when to nap and napping time, you’ll see that sometimes your program
deadlocks, and sometimes it will run for a long time without deadlocking.
This shows that deadlock is the result of a particular series of events;
having the potential for deadlock in your code is not a guarantee that it
will occur. This can make debugging a real pain.

Hand in your revised code and a test run of this program showing
an occurrence of deadlock along with the answer to the following

question: What situation do you observe occurring that leads to the
deadlock?

. Dining Philosophers - Breaking Symmetry: The deadlock problem
in the previous exercise occurs because all the philosophers manage to pick
up their left chopstick. Then no philosopher can pick up his or her right
chopstick, because some other philosopher already has it. The symmetry
in the solution - each philosopher picks up a left chopstick, then a right
chopstick - leads to a deadlock. More generally, symmetric behavior occurs
when similar objects always make the same choices. In some cases this
isn’t a problem. Other cases it will cause a deadlock.

Problems with symmetrical behavior are common in computer science. It
is a standard issue that one needs to think about in dealing with parallel
algorithms where multiple processes or threads act on a set of common
resources, for example.

How do we break symmetry? In parallel algorithms, a common technique
is to apply randomness at the point of symmetry. For example, sepa-
rate processes can each flip a coin (or the computational equivalent), then
decide what to do based on the result. We could do this in the Din-
ing Philosophers solution, and greatly decrease the probability of having
deadlock occur. (In this case, each philosopher would flip a coin to decide
which chopstick to pick up first.) Unfortunately, the use of randomness
would still allow the possibility of choosing symmetric behavior, though
with a small probability. When we are dealing with making choices to
help a parallel algorithm proceed a little faster, this isn’t a problem. But
with the possibility of deadlock, we need to be more careful.

One way to break symmetry in the Dining Philosophers is to let different
Philosopher objects behave differently. There are a couple of obvious
possibilities:

e Each Philosopher object can check its number. If the number is
odd, it picks up its right chopstick first; if it is even, it picks up its
left chopstick first.

e Fach Philosopher object picks the lowest-numbered chopstick it
needs first.

Implement both of these solutions in your program (leave in the napping ()
calls that produced the deadlock, however). That is, implement both ways



of deciding which chopstick to pick up first and comment one out. Com-
pile and run each of your solutions a couple of times to convince yourself
that they run without deadlocking.

Hand in your revised code for both of these solutions and a test
run of each. Also hand in answers to the following questions: Do
these solutions solve all the potential problems? If not, what problem can
still occur?

4. Dining Philosophers - A monitor solution: In the exercises so far
you have used the semaphore as the protection and synchronization mech-
anism. Now you will fabricate a solution to the dining philosophers prob-
lem using the monitor mechanism in Java. Your solution will follow the
structure described in Section 6.7.2 on pages 268-270 of the text. Note
that the code in the text is not Java code. Here are some pointers:

e Implement a class DiningPhilosophers along the lines of the solu-
tion on page 269. You will need to incorporate the keyword synchronized
into some of the methods, and to make additional changes.

The DiningPhilosophers class provides the synchronization and
protection for the philosophers and their chopsticks via the takeForks
and returnForks methods. The test method is a key element.

In the code on page 269 of the text, both the takeForks and test
methods involve a notion of self. Think carefully how you would
implement this in Java. Do you need to do anything explicit? How
do you make a thread wait if the philosopher is not in the eating
state? Do you need an explicit representation of self? Also note
that signal in the test method is really a notification; which form
(notify() or notifyAl1()) do you need here?

e Implement a class Philosopher as you have done in the other prob-
lems. In this problem, though, you want to make use of the sychro-
nization provided by the DiningPhilosophers object. Hence it is
necessary to instantiate a DiningPhilosophers object in the main
method and then pass it to each philosopher object. This will give
each philosopher access to the takeForks and returnForks methods.
Modify the run method appropriately.

e The Dining class can remain as in the previous problems except that
there must be a DiningPhilosophers object instantiated. Also, be
sure that you pass an integer value to each Philosopher object so it
can interact appropriately with the DiningPhilosophers object.

e The final step is to put appropriate output statements to indicate
what is happening to each philosopher. This should signal transitions
from one state to another and also indicate any extended waiting —
i.e., if the philosopher wakes up but still can’t get a chopstick, print
a message.

Hand in the code for the three classes along with output from a
sample run. Also hand in a brief explanation showing that this
solution is deadlock free.

Hand in: Hand in the specified code, test runs, and answers to the questions
by Wednesday after the break (note the extended due date).



