
CSCI 315 Lab 7 Exercise

March 24, 2010

Objectives: In this lab you will work with a memory management simulation. The
goal is to investigate the behavior and performance of various contiguous allocation
algorithms and their effects on external fragmentation.

References:

• Standard Deviation: Bring the formula for standard deviation to lab with you
(you should have seen it in your earlier course work, particularly the statistics
course). You will have to write a method to compute the standard deviation of
the values in an array.

• Text: Bring your textbook to lab. You may have to reference descriptions of
various contiguous memory allocation schemes.

Prelab: There is no prelab this week.

Problems:

• A Simple Memory Manager

Copy the file ∼cs315/Labs10/Lab07/Driver.java and the directory
∼cs315/Labs10/Lab07/MemManage and its contents to your workspace. NOTE:
If you use Eclipse you may need to work out a way to import the Java code into
Eclipse. The Driver.java file imports the contents of the MemManage directory.

Look over the file Driver.java and the files Memory.java and SimpleMM.java
for the memory manager. Notice that:

– The program Driver.java contains code for processing command line argu-
ments.

– The simulation is driven by the random numbers generated in various parts
of the Driver.java code. You can change the character of the simulation by
changing the values to which the random numbers are compared .
Note also that the random number generator randGen is constructed using
an argument that fixes the seed. This insures that each run will use the
same random values. This is useful in development and debugging, and also
in grading. You can make the program behave differently on different runs

1



by deleting the argument. However, complete all your test runs using
the seed that is given.

– Note that there are two different ways in which memory request amounts are
generated. One, labeled “Random requests”, is used in the code as provided
to you. The other, “Bimodal requests”, is commented out. You will use both
in the course of the lab.

Do the following: Modify Driver.java so that when it completes it will print
the average size of the memory allocation requests and the number of
allocation requests (note that this value is computed for you). Also,
comment out any other print statements so that only the average size and
number of allocation requests is printed. (You might actually want to wait to
comment out the other print statements until you get your simulations working.)

• Collecting Statistics

Examine the file MemManage/SimpleMM.java. This memory manager works by
scanning through the blocks in memory (both allocated and unallocated) when-
ever it tries to allocate memory for a request. This is not the most efficient or
sophisticated way to do things, but it works for our purposes, and our examples
are small enough that inefficiency is not a problem.

In the following activities you will be testing the memory manager. As indicated
earlier, Driver has been set up to take optional parameters off the command line.
The first parameter specifies a memory size and the second specifies the number
of operations (allocation or deallocation) to attempt. You can play around with
these parameters, but you must use the following values for your hand-in
runs:

java Driver 10000 800

Try running the program both with and without command line argu-
ments. You don’t have to hand in anything from these runs.

Now carry out the following tasks:

– Modify the implementation: Make the following changes to Driver.java
and SimpleMM.java:

∗ Examine the method allocate() in SimpleMM.java. Note that alloca-
tion requests can fail for two reasons: First, the total amount of memory
available (AmtAvail) may be insufficient. Second, there may be enough
memory available, but it may be fragmented into blocks that are each
too small to handle the request. Add three new, appropriately-named
data members to accumulate the following data:
· the number of requests that fail because total memory available is

insufficient;
· the number of requests that fail because of external fragmentation,

even though sufficient memory is available; and

2



· the sum of the sizes of the requests that fail for the second reason.
Provide accessor methods For these values. Add code to allocate()
so that these measures are accumulated correctly. Then add code to
Driver.java to print the following information derived from those data
members at the end of a run:

XXX allocation requests failed due to insufficient memory.

YYY allocation requests failed due to external fragmentation;
the average size of these requests was ZZZ bytes.

After you get this scheme working, run the simulation with the specified
command line parameters and have the instructor verify that you have
the correct output values.

∗ Add a new public method measureWaste() to SimpleMM.java. This
method should scans the memory and determine (and print) the average
size of the available blocks and the standard deviation of these block
sizes. This provides a measure of the memory fragmentation at the
time this method is called. [Hint: Introduce a new data member in
SimpleMM that keeps track of the number of available blocks. You will
need to adjust this count in allocate, where available blocks are allocated
and sometimes split, and in deallocate, where allocated blocks become
available again. This will provide the information you need to create
a local array of the correct size in measureWaste(). As you scan the
memory, store the size of each block in a position of this array. When
the scan is complete you can calculate the mean and standard deviation
using the values in the array.]

∗ Modify Driver.java so that after every twentieth allocation attempt it
calls measureWaste().

∗ Modify the allocate() method in the SimpleMM class to support best fit
and worst fit allocation. The current version of this method implements
first fit allocation. You should be able to comment out two of the allo-
cation methods and run the third. You can make the changes either by
including the appropriate code within the current allocate() method,
or by making three different copies of allocate(). Be sure to include
comments labeling each of your allocation schemes.

– Run the simulations: Having made (and tested) these additions, run the
memory manager simulation (Driver.java) using the random requests
scheme for generating requests. Run the simulation once for each of the
three allocation algorithms in turn. Keep the seed value for the random
number generator unchanged. Use the command line arguments
10000 and 800 as discussed above. Make sure you are printing only the
reports at the end of the run (information about successful and unsuccessful
allocations), and the outputs of the calls to measureWaste(). Be sure to
cut and paste the results from your runs in your handin file, and be

3



sure to label the results of each run with the allocation method (FF,
BF, WF) and the request generation method (random requests).
Now comment out the code for random requests and uncomment the bi-
modal requests code. Repeat the procedure above, labeling your
results appropriately.

– Analyze your results: When you have completed your experimental runs,
analyze your results and write them up for your handin. There are lots of
interesting issues to consider, and we strongly encourage you to consider your
results and comment on what you see. However, do consider the following
issues:

∗ Which algorithm, according to your simulations, seems to do the best
job of minimizing fragmentation (i.e., being able to allocate the most
requests)? Is the difference large enough to claim that one or two of the
algorithms do substantially better than the other(s)? Remember that
you’ve run one trial with a fixed seed. Do you have enough information
to draw a good conclusion?

∗ What do your results suggest about worst fit?
∗ How do the fragmentation statistics change over the course of your runs?

Does this imply anything interesting?
∗ Comment on the failures due to insufficient total memory. When and

why do they occur? Do they indicate a problem with the allocation
method? Explain why or why not.

Combine the following output and code into a single file, print it using a2ps,
and hand it in:

• the final version of SimpleMM.java, including the three different allocation schemes
and the measureWaste() method;

• the final version of Driver.java;

• the outputs from your runs (include only outputs from calls to measureWaste()
and the final reports printed by the driver) and your analysis;

4


