
CSCI 315 Lab 9 Exercise

April 9, 2009

• Objectives: In this lab you will work with a simulation of a cache with a
goal of understanding the effects of the entry replacement policy on the hit
rate. While the simulator and data are for a memory cache, the concept
of caching is general and covers Translation Lookaside Buffers (TLBs)
and demand paged memories, which can be looked at as page caches, in
addition to memory caches.

• Preparation: Copy the file Driver.java and the directory CacheMgr and
its contents from ∼cs315/Labs10/Lab09 to an appropriate Lab 9 directory.
In the course of today’s lab you will create graphs. You may use whatever
package you prefer for this, including OpenOffice, Matlab, or gnuplot.

• Problem 1:

Study the files Driver.java and CacheMgr/Cache.java to understand
the nature of the simulation.

The data for the simulation is derived from an execution session on a
MIPS processor. The data is contained in files in the directory

~cs315/Labs/CacheData

The class Driver.java reads the data from that directory. What you
should know is that in the memory reference sequence (in the file) there are
265,755 memory references to 4,395 distinct memory pages - this should
give realistic simulation results. During the lab you will implement various
page replacement algorithms and test them using this data.

You should also look over the .java files in CacheMgr, which include
Cache.java, CacheEntry.java, Memory.java and MemEntry.java. The
file Cache.java is especially important because you will modify that file
during the lab session.

Looking at Cache.java you will notice that it includes methods named
RandSelect, Optimal and SelectVictim. Read these methods and un-
derstand them before moving on.

Do This! Compile the file Driver.java. The main() method reads a
command-line argument that specified the cache size. Execute the Driver
program for each of the command-line arguments 8, 16, 32, 64, and 128.
E.g.,

java Driver 8

The results printed will be based on the random page replacement algo-
rithm. Edit Cache.java and modify SelectVictim to call the Optimal
mthod instead. Recompile Driver.java and run it again for the same

1



cache sizes. The optimal algorithm takes considerably longer to run than
the random, so be patient.

Record the results of your 10 test runs (five for each algorithm). Create
a graph plotting the results. Plot cache sizes on the x axis and the
number of hits on the y axis. You should plot a line for each of the
replacement algorithms and label the lines. Include your graphs in
your handin for the lab.

• Problem 2: In the first part of the lab you should have seen that the
statistics you gathered convincingly show that the optimal algorithm is
best at minimizing the cache miss/TLB miss/page-fault rate. However,
there’s a catch: we know the optimal algorithm can’t actually be imple-
mented. You will now implement two new page replacement algorithms
that try to achieve optimal results. Gather similar statistics for each. You
will plot this data and analyze the algorithms’ performance.

You should implement the two algorithms FIFO (first-in, first-out) and
LRU (least recently used). The values you need to implement LRU are
available in CacheEntry objects. You may need to add a data mem-
ber to implement FIFO. Each algorithm should be implemented as a pri-
vate method in the class Cache. To test these you can either add a new
command-line argument to specify which algorithm to use, or edit the
method SelectVictim as needed to call a different algorithm.

Do This! Run the new simulations with the specified cache sizes as you
did before. Plot the results for the two new algorithms. Explain the
results. Include your graphs, your analysis, and the code for your
two new methods in your hand in file.

NOTE: Be careful about stating your conclusions too strongly. For exam-
ple, try running the algorithms for cache sizes of 1024 and 2048. It appears
that the LRU algorithm may be sensitive to the size of the working set.

• Handin: Hand in your graphs, analysis, and code as specified above by
next Monday.

2


