
File Systems: Interface and
Implementation

CSCI 315 Operating Systems Design
Department of Computer Science

Notice: The slides for this lecture have been largely based on those from an earlier
edition of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin,
and Gagne. Many, if not all, the illustrations contained in this presentation come from
this source.

CSCI 315 Operating Systems Design 5

File System Topics

• File Concept
• Access Methods
• Directory Structure
• File System Mounting
• File Sharing
• Protection

CSCI 315 Operating Systems Design 6

File Concept
• A file is a named collection of related

information recorded on secondary storage.
• “Contiguous” logical address space.
• File types:

– Data:
• numeric.
• character.
• binary.

– Program (executable).

CSCI 315 Operating Systems Design 7

File Structure
• None: just a sequence of words or bytes.
• Simple record structure:

– Lines,
– Fixed length,
– Variable length.

• Complex Structures:
– Formatted document,
– Relocatable load file.

• Can simulate last two with first method by inserting
appropriate control characters.

• Who decides:
– Operating system,
– Program.

CSCI 315 Operating Systems Design 8

File Attributes
• Name – only information kept in human-readable form.
• Type – needed for systems that support different types.
• Location – pointer to file location on device.
• Size – current file size.
• Protection – controls who can do reading, writing,

executing.
• Time, date, and user identification – data for

protection, security, and usage monitoring.

 Information about files is kept in the directory
structure, which is maintained on the disk.

CSCI 315 Operating Systems Design 9

File Operations
• Create.
• Write.
• Read.
• Random access.
• Delete.
• Append.
• Truncate (reset size to 0, keep current attributes).
• Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk.

CSCI 315 Operating Systems Design 10

File Types: Name and Extension

CSCI 315 Operating Systems Design 11

Access Methods
• Sequential Access read next
 write next
 reset
 no read after last write
 (rewrite)

• Direct Access read n
 write n
 position to n
 read next
 write next
 rewrite n

 n = relative block number

CSCI 315 Operating Systems Design 12

Sequential-access File

CSCI 315 Operating Systems Design 13

Simulation of Sequential Access
on a Direct-access File

CSCI 315 Operating Systems Design 14

Example of Index
and Relative Files

CSCI 315 Operating Systems Design 15

Directory Structure
Directory: a symbol table that translates file names into

directory entries.

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on tapes.

ping

emacs

ifconfig

mount

fdisk

find

…

…

CSCI 315 Operating Systems Design 16

Partitions and Directories
(File system organization)

CSCI 315 Operating Systems Design 17

Operations on Directories

• Search for a file.
• Create a file.
• Delete a file.
• List a directory.
• Rename a file.
• Traverse the file system.

CSCI 315 Operating Systems Design 18

Goals of Directory Logical
Organization

• Efficiency – locating a file quickly.

• Naming – convenient to users.
– Two users can have same name for different files.
– The same file can have several different names.

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all games,
…)

CSCI 315 Operating Systems Design 19

Single-Level Directory

A single directory for all users.

Drawbacks:
! Naming problem
! Grouping problem

CSCI 315 Operating Systems Design 20

Two-Level Directory
A separate directory for each user.

• Path name.
• Can have the same file name for different user.
• Efficient searching.
• No grouping capability.

CSCI 315 Operating Systems Design 22

Tree-Structured Directories
(Cont.)

• Efficient searching.

• Grouping Capability.

• Current directory (working directory):
– cd /spell/mail/prog,
– type list.

CSCI 315 Operating Systems Design 23

Tree-Structured Directories
(Cont.)

• Absolute or relative path name.
• Creating a new file is done in current directory by default.
• Delete a file
 rm <file-name>
• Creating a new subdirectory is done in current directory.

 mkdir <dir-name>
 Example: if in current directory /mail
 mkdir count

mail

prog copy prt exp count

rm -rf . ⇒ doesnʼt mean “read mail really fast”

CSCI 315 Operating Systems Design 2

Acyclic-Graph Directories
Have shared subdirectories and files.

links: soft (symbolic)

 hard

Unix: ln (read man page);

need to keep a reference count on
each file or directory.

CSCI 315 Operating Systems Design 3

Acyclic-Graph Directories
(Cont.)

• Different names (aliasing) for the same file
or directory.

• If dict deletes list ⇒ dangling pointer.
 Solutions:

– Backpointers, so we can delete all pointers.
Variable size records a problem.

– Backpointers using a daisy chain
organization.

– Entry-hold-count solution.

CSCI 315 Operating Systems Design 26

General Graph Directory

CSCI 315 Operating Systems Design 5

General Graph Directory (Cont.)

• How do we guarantee no cycles?
– Allow only links to file not subdirectories.
– Garbage collection.
– Every time a new link is added use a cycle

detection algorithm to determine whether it is
OK.

CSCI 315 Operating Systems Design 6

File System Mounting
• A file system (partition) must be mounted before it can be

accessed. Mounting allows one to attach the file system on one
device to the file system on another device.

• A unmounted file system needs to be attached to a mount point
before it can be accessed.

existing unmounted

CSCI 315 Operating Systems Design 7

File Sharing

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through a protection scheme.

• On distributed systems, files may be shared across a
network.

• Network File System (NFS) is a common distributed file-
sharing method.

CSCI 315 Operating Systems Design 8

Protection
• File owner/creator should be able to control:

– what can be done,
– by whom.

• Types of access:
– Read,
– Write,
– Execute,
– Append,
– Delete,
– List.

Discretionary Access Control (DAC)

CSCI 315 Operating Systems Design 9

Protection
• Mandatory Access Control (MAC):

– System policy: files tied to access levels = (public, restricted,
confidential, classified, top-secret).

– Process also has access level: can read from and write to all
files at same level, can only read from files below, can only write
to files above.

• Role-Based Access Control (RBAC):
– System policy: defines “roles” (generalization of the Unix idea

of groups).
– Roles are associated with access rules to sets of files and

devices.
– A process can change roles (in a pre-defined set of possibilities)

during execution.

CSCI 315 Operating Systems Design 10

Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users
 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0
 RWX
 c) public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and add some
users to the group.

• For a particular file (say game) or subdirectory, define an appropriate
access.

owner group public

chmod 761 game

Associate a group with a file: chgrp G game

CSCI 315 Operating Systems Design 11

File-System Structure

• File structure:
– Logical storage unit,
– Collection of related information.

• File system resides on secondary storage
(disks).

• File system is organized into layers.
• File control block – storage structure

consisting of information about a file.

CSCI 315 Operating Systems Design 12

Layered File System

CSCI 315 Operating Systems Design 13

File Control Block

CSCI 315 Operating Systems Design 14

In-Memory File System Structures

file open

file read

CSCI 315 Operating Systems Design 15

Virtual File Systems
• Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

• VFS allows the same system call interface (the
API) to be used for different types of file
systems.

• The API is to the VFS interface, rather than any
specific type of file system.

CSCI 315 Operating Systems Design 16

Schematic View of Virtual File
System

ext3 FAT 32 NFS

same API for
all file system
types

CSCI 315 Operating Systems Design 17

Directory Implementation

• Linear list of file names with pointer to the data
blocks:
– simple to program, but…
– time-consuming to execute.

• Hash Table:
– decreases directory search time,
– collisions – situations where two file names hash to

the same location,
– fixed size.

The directory is a symbol table that maps file names to pointers that lead to
the blocks comprising a file.

CSCI 315 Operating Systems Design 18

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We’ll discuss
three options:

 Contiguous allocation,
 Linked allocation,
 Indexed allocation.

CSCI 315 Operating Systems Design 19

Contiguous Allocation
• Each file occupies a set of contiguous blocks on

the disk.

• Simple: only starting location (block #) and length
(number of blocks) are required.

• Suitable for sequential and random access.

• Wasteful of space: dynamic storage-allocation
problem; external fragmentation.

• Files cannot grow unless more space than
necessary is allocated when file is created (clearly
this strategy can lead to internal fragmentation).

CSCI 315 Operating Systems Design 20

Contiguous Allocation of Disk Space
To deal with the dynamic
allocation problem
(external fragmentation),
the system should
periodically compact the
disk.

Compaction may take a
long time, during which the
system is effectively down.

To deal with possibly
growing files, one needs to
pre-allocate space larger
than required at the initial
time => this leads to
internal fragmentation.

CSCI 315 Operating Systems Design 21

Extent-Based Systems
• Many newer file systems (i.e. Veritas File System) use a

modified contiguous allocation scheme.

• Extent-based file systems allocate disk blocks in
extents.

• An extent is a contiguous set of blocks. Extents are
allocated for each file. A file consists of one or more
extents.

• Extents can be added to an existing file that needs
space to grow. A block can be found given by the
location of the first block in the file and the block count,
plus a link to the first extent.

CSCI 315 Operating Systems Design 22

Linked Allocation
Each file is a linked list of
disk blocks.

Simple: need only starting
address.

Overhead: each block links to
the next.

Space cost to store pointer.

Time cost to read one block
to find the next.

Internal fragmentation, but
not external.
Sequential access comes
naturally, random does not.

CSCI 315 Operating Systems Design 23

File-Allocation Table (FAT)
Simple and efficient: One
entry for each block; indexed
by block number. The table is
implements the list linking the
blocks in a file.

Growing a file is easy: find a
free block and link it in.

Random access is easy.

If the FAT is not cached in
memory, a considerable
number of disk seeks
happens.

Used by MS-DOS and OS/2.

CSCI 315 Operating Systems Design 24

Indexed Allocation
Brings all pointers together
into an index block.

One index block per file.

Random access comes easy.

Dynamic access without
external fragmentation, but
have overhead of index block.

Wasted space: how large
should an index block be to
minimize the overhead?

• linked index blocks
• multilevel index
• combined scheme

CSCI 315 Operating Systems Design 25

Combined Scheme: UNIX
If file is small enough, use
only direct blocks pointers.

If number of blocks in file is
greater than the number of
direct block pointers, use
single, double, or triple
indirect.
Additional levels of indirection
increase the number of blocks
that can be associated with a
file.

Index blocks can be cached in
memory, like FAT. Access to
data blocks, however, may
require many disk seeks.

CSCI 315 Operating Systems Design 26

Free-Space Management
• Bit map (1 bit per disk block)

– internal fragmentation
• Linked list (free list)

– external fragmentation
• Grouping

– first free block has address of n free blocks (the last of
which has the address of the next n free blocks and so
on)

• Counting
– like linked list, but each node points to a cluster of

contiguous, free blocks

The OS can cache in memory the free-space management structures
for increased performance. Depending on disk size, this may not be
easy.

CSCI 315 Operating Systems Design 27

Efficiency and Performance
• Efficiency dependent on:

– disk allocation and directory algorithms
– types of data kept in file’s directory entry

• Performance
– disk cache – separate section of main memory for

frequently used blocks
– free-behind and read-ahead – techniques to optimize

sequential access
– improve PC performance by dedicating section of

memory as virtual disk, or RAM disk.

CSCI 315 Operating Systems Design 28

Various Disk-Caching Locations

CSCI 315 Operating Systems Design 29

Page Cache
• A page cache caches pages rather than disk

blocks using virtual memory techniques.

• Memory-mapped I/O uses a page cache.

• Routine I/O through the file system uses the
buffer (disk) cache.

• This leads to the following figure.

CSCI 315 Operating Systems Design 30

I/O Without a Unified Buffer
Cache

CSCI 315 Operating Systems Design 31

Unified Buffer Cache

• A unified buffer cache uses the same page
cache to cache both memory-mapped
pages and ordinary file system I/O.

CSCI 315 Operating Systems Design 32

I/O Using a Unified Buffer
Cache

CSCI 315 Operating Systems Design 33

Recovery
• Consistency checking – compares data in

directory structure with data blocks on disk, and
tries to fix inconsistencies.

• Use system programs to back up data from disk
to another storage device (floppy disk, magnetic
tape).

• Recover lost file or disk by restoring data from
backup.

CSCI 315 Operating Systems Design 34

Log Structured File Systems
• Log structured (or journaling) file systems record each update to

the file system as a transaction.

• All transactions are written to a log. A transaction is considered
committed once it is written to the log. However, the file system
may not yet be updated.

• The transactions in the log are asynchronously written to the file
system. When the file system is modified, the transaction is
removed from the log.

• If the file system crashes, all remaining transactions in the log must
still be performed.

