
Virtual Memory
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture were based on those Operating Systems

Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the

illustrations contained in this presentation come from this source.

CSCI 315 Operating Systems Design 23

Virtual Memory

• Virtual memory – separation of user logical memory

from physical memory.

– Only part of the program needs to be in memory for execution.

– Logical address space can therefore be much larger than

physical address space.

– Allows address spaces to be shared by several processes.

– Allows for more efficient process creation.

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

Activity Q1,2,3.

CSCI 315 Operating Systems Design 24

Virtual Memory
Larger than Physical Memory

CSCI 315 Operating Systems Design 25

Demand Paging

• Bring a page into memory only when it is

needed.

– Less I/O needed.

– Less memory needed.

– Faster response.

– More users.

• Page is needed (there is a reference to it):

– invalid reference abort.

– not-in-memory bring to memory.

CSCI 315 Operating Systems Design 26

Transfer of a Paged Memory to

Contiguous Disk Space

CSCI 315 Operating Systems Design 27

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1 => in-memory, 0 => not-in-memory)

• Initially valid–invalid but is set to 0 on all entries.

• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page table entry is 0 => page
fault.

1

1

1

1

0

0

0

M

Frame # valid-invalid bit

page table

CSCI 315 Operating Systems Design 28

Page Table when some pages are not

in Main Memory

CSCI 315 Operating Systems Design 29

Page Fault
• If there is ever a reference to a page, first reference will trap to OS =>

page fault.

• OS looks at page table to decide:

– If it was an invalid reference => abort.

– If it was a reference to a page that is not in memory, continue.

• Get an empty frame.

• Swap page into frame.

• Correct the page table and make validation bit = 1.

• Restart the instruction that caused the page fault.

CSCI 315 Operating Systems Design 30

Steps in Handling a Page Fault

Activity Q4.

CSCI 315 Operating Systems Design 32

No free frame: now what?

• Page replacement: Are all those pages in

memory being referenced? Choose one to swap

out to disk and make room to load a new page.

– Swap out: Do you really have to save it to disk?

– Algorithm: How do you choose a victim?

– Performance: What algorithm will result in the lowest

possible number of page faults?

• Life with VM: The same page may be brought

in and out of memory several times.

CSCI 315 Operating Systems Design 33

Performance of Demand Paging

• Page Fault Rate: 0 ≤ p ≤ 1.0

– if p = 0 no page faults.

– if p = 1, every reference is a fault.

• Effective Access Time (EAT):

 EAT = [(1 – p) (memory access)] + [p (page fault overhead)]

where:
page fault overhead = [swap page out] + [swap page in]

 + [restart overhead]

Page Table

0

1

2

3

4

5

6

7

…

page #

frame #

Page Table

0

1

2

3

4

5

6

7

…

page #

frame #

page #

valid

Page Table

0

1

2

3

4

5

6

7

…

page #

frame # valid dirty

CSCI 315 Operating Systems Design 34

Page Replacement

• Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk.

• Page replacement completes separation between logical

memory and physical memory – large virtual memory

can be provided on a smaller physical memory.

CSCI 315 Operating Systems Design 36

Basic Page Replacement

1. Find the location of the desired page on disk.

2.Find a free frame:
 - If there is a free frame, use it.
 - If there is no free frame, use a page replacement

 algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.

Update the page and frame tables.

4. Restart the instruction.

CSCI 315 Operating Systems Design 37

Page Replacement

CSCI 315 Operating Systems Design 38

Page Replacement Algorithms

• Goal: Produce a low page-fault rate.

• Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on that
string.

• The reference string is produced by tracing a
real program or by some stochastic model. We
look at every address produced and strip off the
page offset, leaving only the page number. For
instance:

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

CSCI 315 Operating Systems Design 39

Graph of Page Faults Versus The

Number of Frames

CSCI 315 Operating Systems Design 40

FIFO Page Replacement
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

• 3 frames (3 pages can be in memory at a time per process)

• 4 frames

• FIFO Replacement Belady’s Anomaly: more frames, more
page faults.

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

4 4 3

CSCI 315 Operating Systems Design 41

FIFO Page Replacement

CSCI 315 Operating Systems Design 42

FIFO (Belady’s Anomaly)

