
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes

Review:

Booting the OS

2

Booting Steps Review

1) Where is BIOS stored when your machine powers up?

1) The BIOS is stored on Flash disk which is mapped to BIOS

address in memory

2) What is in the RAM (main memory) when your machine

powers up?

1) Garbage!

3) What are example boot devices and who chooses the boot

device for the BIOS?

1) CD-ROM, Hard drive, …

2) The user chooses it

4) What is a Master Boot Record (MBR) and what does it

contain?

1) First 512 Bytes of the boot device and contains the bootstrapper

program and partition table

3

Processes

4

Processes

• What is a process?

• Informally: a program in execution

• Examples of processes in a computer system

• The Kernel and all its related processes

• Web browser

• Word editor

• JVM

• Python IDE

• …

• How can you see the list of processes on your machine?

• top, htop

• ps -el

5

You want to design the OS to

allow for multi processes

running at the same time…

6

Specs of the multi-processor

Computer System
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

7

A B C Processes:

T
im

e (m
s)

 How can this be

implemented in a real

computer system?

Specs of the multi-processor

Computer System
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

8

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

Specs of the multi-processor

Computer System
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

9

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

What does the OS need to know about the

Processes to be able to do this

Switching?

Processes Components

• What are the main components of a process?

• Text section

• The code

• Stack

• Local variables

• Function parameters

• …

• Heap

• Dynamically allocated memory

• Data Section

• Global variables

• What else?

10

Processes Components

• Assume processes A is running in a system

• The CPU decides to switch from process A to another process

• What information will the CPU need to resume process A later?

• Program Counter

• Value of registers

• SO, a process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

11

lw $t0, offset($s0)

lw $t1, offset($s1)

add $d, $t0, $t1

.

.

.

Process A

Processes Components

• A process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

• The process in memory looks like this

12

Process States

• When a process is running

• Running

• When a program execution is paused so other processes can run

• Ready

• When a process is waiting on an input or output (I/O operation)

• Waiting

• When a process is just created

• New

• When a process is all done

• Terminated

• How does the state diagram of process look like?
13

FYR: Processes States

14

As a process executes in the system its state changes

 new: The process is being created.

 running: Instructions are being executed.

 waiting: The process is waiting for some event to occur.

 ready: The process is waiting to be assigned to a processor.

 terminated: The process has finished execution.

Process Lifecycle

15

What other information is needed?

• If you want to design a scheduler to divide your time resource

between a bunch of different processes, what info would you

need in order to schedule effectively and fairly

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue pointers

• Memory-management information – memory allocated to the

process

• Accounting information – CPU used, clock time elapsed since

start, time limits

• I/O status information – I/O devices allocated to process, list of

open files

16

Where to keep that information?

• There is a data type called Process Control Block (PCB) that

contains all this information about each process

17

CPU Switch between Processes

18

• Context Switch: When CPU switches to another process, the
system must save the state of the old process and load the
saved state for the new process via a context switch

• This time is pure overhead!

Scheduler

• A list of all processes PCBs is available to OS scheduler

• Ready queue: a list of all processes which are ready and waiting to
execute

• Device queue: a list of all processes waiting for an I/O operation on a
device, e.g., Disk queue, terminal queue

• 19

Scheduler

20

Scheduler

• Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)

• Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes)  (may

be slow)

• The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

• CPU-bound process – spends more time doing computations; few very

long CPU bursts

• Long-term scheduler strives for good process mix

21

Medium-Term Scheduler

• Medium-term scheduler can be added if degree of

multiple programming needs to decrease

• Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

22

Process Creation

• Processes may be created or deleted dynamically in the system

• Examples of creating a process within a process?

• If you are designing a web server, you need to constantly listen to

possible incoming requests

• Also there could be 1000 of request every second, how can you

address them all in a timely fashion?

• You would like to run another program within your program

• Parent process creates children processes, which, in turn

can create other processes, forming a tree of processes.

23

A Process Tree on Linux

24

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

OS Kernel

Pid=0

Process Creation

• Resource sharing:
• Parent and children share all resources,

• Children share subset of parent’s resources,

• Parent and child share no resources.

• Execution:
• Parent and children execute concurrently,

• Parent may wait until children terminate.

• Address space:
• Child has duplicate of parent’s address space, or

• Child can have a program loaded onto it.

• UNIX examples:
• fork system call creates new process and returns with a pid (0 in child,

> 0 in the parent),

• exec system call can be used after a fork to replace the
process’ memory space with a new program.

25

