
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Operations

Inter Process Communication (IPC)

Process

2

Process Lifecycle

3

What information is needed?

• If you want to design a scheduler to divide your time resource

between a bunch of different processes, what info would you

need in order to schedule effectively and fairly

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue pointers

• Memory-management information – memory allocated to the

process

• Accounting information – CPU used, clock time elapsed since

start, time limits

• I/O status information – I/O devices allocated to process, list of

open files

4

Where to keep that information?

• There is a data type called Process Control Block (PCB) that

contains all this information about each process

5

CPU Switch between Processes

6

• Context Switch: When CPU switches to another process, the
system must save the state of the old process and load the
saved state for the new process via a context switch

• This time is pure overhead!

Process Creation: How?

• An existing process can create a new process by calling the

fork() system call

• fork() runs once in the parent process but returns two times,

1) In the child process, with returning value of 0

2) In the parent process, with the value of the child process id

• Both the child and the parent process start executing with the

instruction that follows the fork() system call

• The child process gets a copy of the parent’s data space, heap

and stack (It is a separate copy from the parent’s)

7

Quiz 2
You can use your notes.

8

Process Creation

• Processes may be created or deleted dynamically in the system

• Examples of creating a process within a process?

• If you are designing a web server, you need to constantly listen to

possible incoming requests

• Also there could be 1000 of request every second, how can you

address them all in a timely fashion?

• You would like to run another program within your program

• Parent process creates children processes, which, in turn

can create other processes, forming a tree of processes.

9

A Process Tree on Linux

10

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

OS Kernel

Pid=0

Process Creation

• Resource sharing:
• Parent and children share all resources,

• Children share subset of parent’s resources,

• Parent and child share no resources.

• Execution:
• Parent and children execute concurrently,

• Parent may wait until children terminate.

• Address space:
• Child has duplicate of parent’s address space, or

• Child can have a program loaded onto it.

• UNIX examples:
• fork system call creates new process and returns with a pid (0 in

child, > 0 in the parent),

11

FYR: Linux fork()

• The new process created by fork is called the child process. This function is called once but
returns twice. The only difference in the returns is that the return value in the child is 0,
whereas the return value in the parent is the process ID of the new child. The reason the
child’s process ID is returned to the parent is that a process can have more than one child,
and there is no function that allows a process to obtain the process IDs of its children. The
reason fork returns 0 to the child is that a process can have only a single parent, and the child
can always call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for
use by the kernel, so it’s not possible for 0 to be the process ID of a child.)

• Both the child and the parent continue executing with the instruction that follows the call to
fork. The child is a copy of the parent. For example, the child gets a copy of the parent’s data
space, heap, and stack. Note that this is a copy for the child; the parent and the child do not
share these portions of memory. The parent and the child do share the text segment, however
(Section 7.6).

• Modern implementations don’t perform a complete copy of the parent’s data, stack, and
heap, since a fork is often followed by an exec. Instead, a technique called copy-on-write
(COW) is used. These regions are shared by the parent and the child and have their
protection changed by the kernel to read-only. If either process tries to modify these regions,
the kernel then makes a copy of that piece of memory only, typically a “page” in a virtual
memory system. Section 9.2 of Bach [1986] and Sections 5.6 and 5.7 of McKusick et al.
[1996] provide more detail on this feature.

12

Process Creation: How?

• An existing process can create a new process by calling the

fork() system call

• fork() runs once in the parent process but returns two times,

1) In the child process, with returning value of 0

2) In the parent process, with the value of the child process id

• Both the child and the parent process start executing with the

instruction that follows the fork() system call

• The child process gets a copy of the parent’s data space, heap

and stack (It is a separate copy from the parent’s)

13

Process Creation: sharing resources

• The child process gets its own copy of the data section, stack

and heap of the parent process

• The child process get a duplicate of all open file descriptors in

its parent process

• The parent and the child share a file table entry for every open

descriptor

• The parent and the child share the same file offset

• If a child process is writing to standard output when the parent process

is executing it can append to the end of standard output

• Does changes in the child variables change the parent variables?

• No

 14

Process Creation: example

15

Process Creation Diagram

• The parent can wait on the child process by system calls

• pid_t wait (int * status);

• pid_t waitpid (pid_t pid, int * status, int options);

• Both these return process id on successful return or -1 in case of

an error

• Otherwise the parent process might terminate before the child

process terminates!!!

16

Process Execution

• A child process can execute

1) A segment of its parent code (as we saw before)

2) Another program that is loaded to its memory using

exec() system call

• When a process calls one of the exec functions, that

process is completely replaced by the new program,

and the new program starts executing at its main

function

17

Process Execution: example

18

FYR: exec system call

19

Process Termination

• Process executes last statement and then asks the operating

system to delete it using the exit() system call.

• Returns status data from child to parent (via wait(&status))

• Process’ resources are deallocated by operating system

• The parent process may wait for termination of a child process

by using the wait()system call. The call returns status

information and the pid of the terminated process

 pid = wait(&status);

• If parent has not called wait()yet but the child is terminated,

the info of child is still kept in the process table. This child

process is a zombie

• If parent terminated without invoking wait , process is an

orphan, which is adopted by init process

20

Demo!

21

Interprocess

Communication (IPC)

22

Interprocess Communication

23

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other

processes, including sharing data

• Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• Example: Chrome browser

Chrome Browser

• Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types

of processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

• Plug-in process for each type of plug-in

24

Chrome Browser

• Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types

of processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

• Plug-in process for each type of plug-in

25

Renderer needs to communicate with

the browser

And plug-in process needs to talk to

the Browser if a tab is using a plug-in

Interprocess Communication

26

• Example: Chrome browser

• Cooperating processes need interprocess communication

(IPC)

• Two models of IPC

• Shared memory

• Message passing

Communication Models

27

(a) Message passing. (b) shared memory.

Shared Memory:

Producer Consumer Example
• Assume process A is producing items and put them into a buffer

of size N

• Process B is reading from the buffer

• Example

• Compiler sends assembly code to the assembler

28

buffer

A:Producer Code:

Produce item

buffer [in] = item

in = (in + 1)%N

B: Consumer Code:

item = buffer [out]

out = (out + 1)%N

Consume the item

in

out

0 1 2 3

N
-2

 …

N
-1

Producer Consumer Example

• What are the things that can go wrong here?

• The buffer could be empty (nothing to be read by the consumer)

• The buffer could be full (no items can be added by the producer)

• What if they try to access the buffer at the same time?

• Initially in = out = 0

29

buffer

A:Producer Code:

Produce item

buffer [in] = item

in = (in + 1)%N

B: Consumer Code:

item = buffer [out]

out = (out + 1)%N

Consume the item

in

out

0 1 2 3

N
-2

 …

N
-1

Producer-Consumer Example

30

item next_produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % N) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % N;

}

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % N;

 /* consume the item in next consumed */

}

Message Passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

31

Message Passing

• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of

communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or

variable?

• Is a link unidirectional or bi-directional?
32

Message Passing

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

33

Pipes

34

Pipes

• Acts as a conduit allowing two processes to communicate

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-duplex?

• Must there exist a relationship (i.e., parent-child) between the

communicating processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the process

that created it. Typically, a parent process creates a pipe and

uses it to communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child

relationship.

35

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer

style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes

36

