
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Operations Review

Inter Process Communication (IPC)

Review

• What is a system call?

• Provides an interface to the services made available by an operating
system

• Systems execute thousands of system calls per second

• Every file access

• Every input/output device

• What is an API?

• Application programming interface that specifies a set of functions
available to the programmers.

• What is the Unix system’s API?

• POSIX which is accessible through C language as libc library

• System call interface?

• Each programming language provides a system call interface that
serves as the link to system calls made available by the operating
system

2

3

Process

4

Process Creation: How?

• An existing process can create a new process by calling the

fork() system call

• fork() runs once in the parent process but returns two times,

1) In the child process, with returning value of 0

2) In the parent process, with the value of the child process id

• Both the child and the parent process start executing with the

instruction that follows the fork() system call

• The child process gets a copy of the parent’s data space, heap

and stack (It is a separate copy from the parent’s)

5

Process Creation using fork():

sharing resources
• The child process gets its own copy of the data section, stack

and heap of the parent process

• The child process get a duplicate of all open file descriptors in
its parent process

• The parent and the child share a file table entry for every open
descriptor

• The parent and the child share the same file offset

• If a child process is writing to standard output when the parent process
is executing it can append to the end of standard output

• Note that every UNIX program has three streams opened for it
when it starts up, one for input (stdin), one for output (stdout), and
one for error messages (stderr) with file descriptors of 0, 1 and 2
respectively.

• Does changes in the child variables change the parent variables?

• No

6

Process Execution

• A child process can execute

1) A segment of its parent code (as we saw before)

2) Another program that is loaded to its memory using

exec() system call

• When a process calls one of the exec functions, that

process is completely replaced by the new program,

and the new program starts executing at its main

function

7

Process Execution: example

8

Process Termination

• Process executes last statement and then asks the operating system to
delete it using the exit() system call.

• Returns status data from child to parent (via wait(&status))

• Process’ resources are deallocated by operating system

• The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

 pid = wait(&status);

• Zombie process?

• If parent has not called wait()yet but the child is terminated, the
info of child is still kept in the process table. This child process is a
zombie.

• Orphan process

• If parent terminated without invoking wait, the child process is an
orphan, which is adopted by init process

9

Process Operations Diagram

• The parent can wait on the child process by system calls

• pid_t wait (int * status);

• pid_t waitpid (pid_t pid, int * status, int options);

• Both these return process id on successful return or -1 in case of

an error

• Acts like a synchronization point

10

Demo!
ls

11

Interprocess

Communication (IPC)

12

Interprocess Communication

13

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other

processes, including sharing data

• Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• Example: Chrome browser

Chrome Browser

• Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types

of processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

• Plug-in process for each type of plug-in

14

Chrome Browser

• Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types

of processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

• Plug-in process for each type of plug-in

15

Renderer needs to communicate with

the browser

And plug-in process needs to talk to

the Browser if a tab is using a plug-in

Interprocess Communication

16

• Example: Chrome browser

• Cooperating processes need interprocess communication

(IPC)

• Two models of IPC

• Shared memory

• Message passing

Communication Models

17

(a) Message passing. (b) shared memory.

Shared Memory:

Producer Consumer Example
• Assume process A is producing items and put them into a buffer

and Process B is reading from the buffer

• Example: Compiler sends assembly code to the assembler

• Buffer

• Unbounded

• Bounded

18

buffer

0 1 2 3 …

0 1 2 3

N
-2

 …

N
-1

Shared Memory:

Producer Consumer Example
• Assume process A is producing items and put them into a

bounded buffer of size N and Process B is reading from the buffer

• Example: Compiler sends assembly code to the assembler

• How can we design this communication?

• in: next empty slot

• out: next ready to be read slot

• Initially in = out = 0

19

buffer

in

out

0 1 2 3

N
-2

 …

N
-1

Shared Memory:

Producer Consumer Example
• Assume process A is producing items and put them into a

bounded buffer of size N and Process B is reading from the buffer

• How can we design this communication?

• What does process A and B code look like?

20

buffer

A:Producer Code:

Produce item

buffer [in] = item

in = (in + 1)%N

B: Consumer Code:

item = buffer [out]

out = (out + 1)%N

Consume the item

in

out

0 1 2 3

N
-2

 …

N
-1

Producer Consumer Example

• What are the things that can go wrong here?

• The buffer could be empty (nothing to be read by the consumer)

• in == out

• The buffer could be full (no items can be added by the producer)

• (in + 1) % N == out

• What if they try to access the buffer at the same time?

21

buffer

A:Producer Code:

Produce item

buffer [in] = item

in = (in + 1)%N

B: Consumer Code:

item = buffer [out]

out = (out + 1)%N

Consume the item

in

out

0 1 2 3

N
-2

 …

N
-1

Producer-Consumer Example

22

item next_produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % N) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % N;

}

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % N;

 /* consume the item in next consumed */

}

 What if they try to access the

buffer concurrently?

 We do not allow the indexes to

be the same, unless the buffer is

empty.

 What is maximum usable

number of slots?

 Can we improve this?

 More on this later!!!

Shared Memory Conclusion

• As we saw in the producer consumer example, in message

sharing the processes need to coordinate among each other to

avoid loss of info and be synchronized

• This communication is fast but there are complications

associated with it

• So, let’s look at the other communication that is facilitated by

the kernel

• Message Passing

23

Message Passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

24

Message Passing

• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of

communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or

variable?

• Is a link unidirectional or bi-directional?
25

Message Passing

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

26

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating

processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

27

Indirect Communication

• Messages are directed and received from mailboxes (also referred to
as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bi-directional

• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A
28

Indirect Communication

• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

29

Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is
received

• Blocking receive -- the receiver is blocked until a message is
available

• Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and
continue

• Non-blocking receive -- the receiver receives:

• A valid message, or

• Null message

• Different combinations possible

• If both send and receive are blocking, we have a rendezvous

30

Producer Consumer:

Message Passing
• Producer-consumer becomes trivial

31

message next_consumed;

while (true) {

 receive(next_consumed);

 /* consume the item in next consumed */

}

 message next_produced;

 while (true) {

 /* produce an item in next produced */

 send(next_produced);

 }

Pipes

32

Pipes

• Acts as a channel allowing two processes to communicate

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-duplex?

• Must there exist a relationship (i.e., parent-child) between the

communicating processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the process

that created it. Typically, a parent process creates a pipe and

uses it to communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child

relationship.

33

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer

style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes

34

Named Pipes

• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the

communicating processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems

35

