Operating System Design

Processes Scheduling Review
IPC: Pipes

Neda Nasiriani { | J
Fall 2018



Processes

* What is a process?
Informally: a program in execution

« Examples of processes in a computer system
The Kernel and all its related processes
Web browser
Word editor
JVM
Python IDE

* How can you see the list of processes on your machine?
top, htop
ps -el




You want to design the OS to
allow for multi processes
running at the same time. ..

Assume there Is one CPU!




Specs of the multi-process
Computer System with one CPU

» We want processes to run concurrently, so (i) they can interact
with each other, and (ii) maximize CPU utilization

Fact: at each time only one process can run on each processor

Remedy: So, we should switch processes fast enough so they feel
like they are all running simultaneously (illusion)

Processes:

How can this be
Implemented In a real

computer system?

(sw) swi




Specs of the multi-process
Computer System with one CPU

* We want processes to run concurrently, so (i) they can interact
with each other, and (ii) maximize CPU utilization

- Fact: at each time only one process can run on each processor

* Remedy: So, we should switch processes fast enough so they feel
like they are all running simultaneously (illusion)

+ Can the OS kernel as the main process in the system perform
this switching?

Processes: A B C OS
9
‘ OS tasks?
- J * deciding who should
= @ run next,
3 » Handle interrupts if
) g any happened

‘ . ...




Specs of the multi-process
Computer System with one CPU

We want processes to run concurrently, so (i) they can interact
with each other and (i) maadimize S| | Zade

hat does the OS need to know about the
Processes. Processes to be able to do this

Switching? Y

(sw) awiy




Processes Components

» What are the main components of a process?
Text section
The code
Stack

Local variables
Function parameters

Heap

Dynamically allocated memory
Data Section

Global variables
What else?




Processes Components

+ Assume processes A is running in a system
The CPU decides to switch from process A to another process

What information will the CPU need to resume process A later?
Program Counter
Value of registers

+ SO, a process is associated with the following components

Text section Process A
Data section lw $t0, offset($s0)
Heap lw $t1, offset($sl)

Stack > add $d, $t0, $t1

Program Counter
Value of Registers




Processes Components

A process Is associated with the following components
Text section

max

Data section Shac
Heap l
Stack

Program Counter
Value of Registers

* The process in memory looks like this




What other information 1s needed?

- If you want to design a scheduler to divide your time resource
between a bunch of different processes, what info would you
need in order to schedule effectively and fairly

Process state — running, waiting, etc

Program counter — location of instruction to next execute

CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue pointers

Memory-management information — memory allocated to the
process

Accounting information — CPU used, clock time elapsed since
start, time limits

I/O status information — 1/O devices allocated to process, list of ( 0 J
open files




Where to keep that information?

* There is a data type called Process Control Block (PCB) that
contains all this information about each process

process state
process number

program counter

registers

memory limits

list of open files




CPU Switch between Processes

process P, operating system process P,

interrupt or system call
executing ﬂ

3 | save state into PCB, |

idle

|reload state from PCB, | 1
Fidle interrupt or system call executing

4

A
| save state into PCB; |

idle

|reload state from PCBO|

executing ux

» Context Switch: When CPU switches to another process, the
system must save the state of the old process and load the
saved state for the new process via a context switch [ 19 ]

» This time Is pure overhead!




Scheduler

A list of all processes PCBs iIs available to OS scheduler

Ready queue: a list of all processes which are ready and waiting to

execute

Device queue: a list of all processes waiting for an 1/O operation on a

queue header

ready
queue

head

PCB,

tail

N\

PCB,

registers

device, e.g., Disk queue, terminal queue

mag
tape
unit 1

disk
unit 0

head

——

tail

head

/

tail

PCB,

PCB,,

registers

PCB,

—

=

PCBs




Scheduler

| ready queue CPU g
l/O queue  *=—— /O request [«

time slice P

expired

child fork a
executes child

interrupt wait for an
occurs interrupt

A

A




Scheduler

Short-term scheduler (or CPU scheduler) — selects which process should
be executed next and allocates CPU

Sometimes the only scheduler in a system

Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

Long-term scheduler (or job scheduler) — selects which processes should
be brought into the ready queue

Long-term scheduler is invoked infrequently (seconds, minutes) = (may
be slow)

The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

I/O-bound process — spends more time doing 1/O than computations,
many short CPU bursts

CPU-bound process — spends more time doing computations; few very
long CPU bursts

Long-term scheduler strives for good process mix




Medium-Term Scheduler

- Medium-term scheduler can be added if degree of
multiple programming needs to decrease

Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue -@)_ » end
I/O waiting
gueues

Yy




IPC: Pipes




Pipes

Acts as a channel allowing two processes to communicate

Issues:
Is communication unidirectional or bidirectional?
In the case of two-way communication, is it half or full-duplex?

Must there exist a relationship (i.e., parent-child) between the
communicating processes?

Can the pipes be used over a network?
Ordinary pipes — cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.
Named pipes — can be accessed without a parent-child
relationship. [ 18 J




Ordinary Pipes

* Ordinary Pipes allow communication in standard producer-consumer
style

 Producer writes to one end (the write-end of the pipe)
» Consumer reads from the other end (the read-end of the pipe)
 Ordinary pipes are therefore unidirectional

* Require parent-child relationship between communicating processes

parent child
fd[0]  fd[1] fd[O] fd[1]

= G =

» Windows calls these anonymous pipes




Pipes: creation and setup

#include <unistd.h>

int pipe(int /J2/) ;

parent child
l fd[1) £d[0) ‘
— g
/ o
kernel

» The data in the pipe flows through the kernel.
» Normally, the process that calls pipe then calls fork, creating an IPC channel from [ 20 J
the parent to the child, or vice versa.




Pipes: creation and setup

#include "apue.h"

int
main (void)
{
int n;
int fd[2]:
pid t pid;
char line [MAXLINE] ;

if (pipe(fd) < 0)
err sys("pipe error"):

if ((pid = fork()) < 0) {
err sys("fork error");

} else if (pid > 0) { /* parent */
close (fd[0]) :
write(fd[1], "hello world\n", 12):

} else { /* child */
close (fd[1]):
n = read(fd[0], line, MAXLINE):
write (STDOUT FILENO, line, n):

}
exit (0) ;




Named Pipes

Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for communication
Provided on both UNIX and Windows systems




Activity!




