
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Scheduling Review

IPC: Pipes

Processes

• What is a process?

• Informally: a program in execution

• Examples of processes in a computer system

• The Kernel and all its related processes

• Web browser

• Word editor

• JVM

• Python IDE

• …

• How can you see the list of processes on your machine?

• top, htop

• ps -el

2

You want to design the OS to

allow for multi processes

running at the same time…
Assume there is one CPU!

3

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

4

A B C Processes:

T
im

e (m
s)

 How can this be

implemented in a real

computer system?

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

5

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

6

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

What does the OS need to know about the

Processes to be able to do this

Switching?

Processes Components

• What are the main components of a process?

• Text section

• The code

• Stack

• Local variables

• Function parameters

• …

• Heap

• Dynamically allocated memory

• Data Section

• Global variables

• What else?

7

Processes Components

• Assume processes A is running in a system

• The CPU decides to switch from process A to another process

• What information will the CPU need to resume process A later?

• Program Counter

• Value of registers

• SO, a process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

8

lw $t0, offset($s0)

lw $t1, offset($s1)

add $d, $t0, $t1

.

.

.

Process A

Processes Components

• A process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

• The process in memory looks like this

9

What other information is needed?

• If you want to design a scheduler to divide your time resource

between a bunch of different processes, what info would you

need in order to schedule effectively and fairly

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue pointers

• Memory-management information – memory allocated to the

process

• Accounting information – CPU used, clock time elapsed since

start, time limits

• I/O status information – I/O devices allocated to process, list of

open files

10

Where to keep that information?

• There is a data type called Process Control Block (PCB) that

contains all this information about each process

11

CPU Switch between Processes

12

• Context Switch: When CPU switches to another process, the
system must save the state of the old process and load the
saved state for the new process via a context switch

• This time is pure overhead!

Scheduler

• A list of all processes PCBs is available to OS scheduler

• Ready queue: a list of all processes which are ready and waiting to
execute

• Device queue: a list of all processes waiting for an I/O operation on a
device, e.g., Disk queue, terminal queue

• 13

Scheduler

14

Scheduler

• Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds) (must be

fast)

• Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes) (may

be slow)

• The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

• CPU-bound process – spends more time doing computations; few very

long CPU bursts

• Long-term scheduler strives for good process mix

15

Medium-Term Scheduler

• Medium-term scheduler can be added if degree of

multiple programming needs to decrease

• Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

16

IPC: Pipes

17

Pipes

• Acts as a channel allowing two processes to communicate

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-duplex?

• Must there exist a relationship (i.e., parent-child) between the

communicating processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the process

that created it. Typically, a parent process creates a pipe and

uses it to communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child

relationship.

18

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer

style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes

19

Pipes: creation and setup

20

 The data in the pipe flows through the kernel.

 Normally, the process that calls pipe then calls fork, creating an IPC channel from

the parent to the child, or vice versa.

Pipes: creation and setup

21

Named Pipes

• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the

communicating processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems

22

Activity!

23

