
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Scheduling Review

IPC: Pipes

Processes

• What is a process?

• Informally: a program in execution

• Examples of processes in a computer system

• The Kernel and all its related processes

• Web browser

• Word editor

• JVM

• Python IDE

• …

• How can you see the list of processes on your machine?

• top, htop

• ps -el

2

You want to design the OS to

allow for multi processes

running at the same time…
Assume there is one CPU!

3

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

4

A B C Processes:

T
im

e (m
s)

 How can this be

implemented in a real

computer system?

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

5

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

Specs of the multi-process

Computer System with one CPU
• We want processes to run concurrently, so (i) they can interact

with each other, and (ii) maximize CPU utilization

• Fact: at each time only one process can run on each processor

• Remedy: So, we should switch processes fast enough so they feel

like they are all running simultaneously (illusion)

• Can the OS kernel as the main process in the system perform

this switching?

6

A B C Processes:

T
im

e (m
s)

OS

OS tasks?

• deciding who should

run next,

• Handle interrupts if

any happened

• …

What does the OS need to know about the

Processes to be able to do this

Switching?

Processes Components

• What are the main components of a process?

• Text section

• The code

• Stack

• Local variables

• Function parameters

• …

• Heap

• Dynamically allocated memory

• Data Section

• Global variables

• What else?

7

Processes Components

• Assume processes A is running in a system

• The CPU decides to switch from process A to another process

• What information will the CPU need to resume process A later?

• Program Counter

• Value of registers

• SO, a process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

8

lw $t0, offset($s0)

lw $t1, offset($s1)

add $d, $t0, $t1

.

.

.

Process A

Processes Components

• A process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

• The process in memory looks like this

9

What other information is needed?

• If you want to design a scheduler to divide your time resource

between a bunch of different processes, what info would you

need in order to schedule effectively and fairly

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue pointers

• Memory-management information – memory allocated to the

process

• Accounting information – CPU used, clock time elapsed since

start, time limits

• I/O status information – I/O devices allocated to process, list of

open files

10

Where to keep that information?

• There is a data type called Process Control Block (PCB) that

contains all this information about each process

11

CPU Switch between Processes

12

• Context Switch: When CPU switches to another process, the
system must save the state of the old process and load the
saved state for the new process via a context switch

• This time is pure overhead!

Scheduler

• A list of all processes PCBs is available to OS scheduler

• Ready queue: a list of all processes which are ready and waiting to
execute

• Device queue: a list of all processes waiting for an I/O operation on a
device, e.g., Disk queue, terminal queue

• 13

Scheduler

14

Scheduler

• Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)

• Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes)  (may

be slow)

• The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

• CPU-bound process – spends more time doing computations; few very

long CPU bursts

• Long-term scheduler strives for good process mix

15

Medium-Term Scheduler

• Medium-term scheduler can be added if degree of

multiple programming needs to decrease

• Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

16

IPC: Pipes

17

Pipes

• Acts as a channel allowing two processes to communicate

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-duplex?

• Must there exist a relationship (i.e., parent-child) between the

communicating processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the process

that created it. Typically, a parent process creates a pipe and

uses it to communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child

relationship.

18

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer

style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes

19

Pipes: creation and setup

20

 The data in the pipe flows through the kernel.

 Normally, the process that calls pipe then calls fork, creating an IPC channel from

the parent to the child, or vice versa.

Pipes: creation and setup

21

Named Pipes

• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the

communicating processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems

22

Activity!

23

