
Operating System Design 

  

Neda Nasiriani 

Fall 2018 
1 

Threads 



Concurrent vs. Parallel computing 

• Concurrent execution on single-core system: 

• Supports more than one task by allowing all the tasks to 
make progress 

 

 

 

• Parallelism on a multi-core system: 

• Perform more than one task simultaneously 
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Multicore  or Multiprocessor 

• Increasing number of processing cores on computer systems 

• Parallelism can be achieved  

• Decrease the execution time 

• What is the potential performance gain from adding another 

computing core? (AMDAHL’S LAW) 

 

 

 

• S is serial portion 

• N processing cores 

• If S=40% and N grows very large what is maximum speed up? 

• 2.5 times 
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Threads 
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When multi-process architecture 

makes sense? 
• Web Server Example 

• If you are designing a web server, you need to constantly listen to 

possible incoming requests 

• Also there could be 1000 of requests every second, how can you 

address them all in a timely fashion? 

• Word Editor Example 

• Allow user to work on a very large file while providing spell 

checking in the background (without pausing the editing) 

• Apply the keystrokes to the document 

• Automatically saving it without pausing the user work 
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Word Editor Example 

• How can we achieve this based on the things we learnt? 

• Creating a process for spell checking 

• Let’s see how it looks! 

• What happens when the user is entering new data in the parent 

process? How can the child access it for spell checking? 
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Parent Process Child Process: Spell Checker 

fork() 
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Parent Process Child Process: Spell Checker 

fork() 

What if the child process 

had access to the data? 



Multi-threaded Execution 

• Can we achieve multiple executions using the same data and code? 

• How can we have multiple threads of execution (different parts of the 
code) with access to the same data? 

• If we can have multiple executions. Then what info do we need for each 
thread of execution? 
• Stack 

• Registers 
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Multi-threaded Execution 

• Let’s think about the word editor example again 

• What if the spell checker thread corrects a word spelling and at the 

same time the user is changing that word in the editor thread? 

• What can go wrong here? 

• Inconsistency in the data section 
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Multi-threaded Execution 

• Let’s think about the word editor example again 
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Spell-check 

Can we mitigate this inconsistency? 

YES, We can avoid this using 

synchronization techniques that we 

will see in chapter 5. 



Web Server Example 

• Assume the web server is servicing search request (google 

search engine) 

• Each request to be served is of similar nature (repetitive code) 

and has to work on the same information (repetitive data) 

• What if we could have multiple executions of the same search 

code within the same process? 

• Let’s see how it looks!  
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Multithreaded Server 

Architecture 

client server 

request (1) 
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Based on slides from Luiz F. Perrone 

Data Code Files 
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Multithreaded Server 
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Threads vs. Processes 

• What are the advantages of Threads over Processes 

• Light weight  

• Processes are costly to create (around 30X time more time) 

• Context switching processes can take up to 5X more time  

• More Efficient 

• Sharing data is easier 

• PCBs are large data types while TCB are way smaller 

• What are the disadvantages and challenges of Threads  

• We need consistency when accessing the shared data 

•  We should implement synchronization method among threads 

accessing the shared data 

• Can complicates execution 
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FYR: Why Threads? 

• Responsiveness: multiple threads can be executed in 

parallel (in multi-core machines) 

• Resource sharing:  multiple threads have access to the 

same data, sharing made easier 

• Economy: the overhead in creating and managing threads 

is smaller 

• Scalability: more processors (or cores), more threads 

running in parallel 
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Create Threads 
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NAME 

       pthread_create - create a new thread 

 

SYNOPSIS 

       #include <pthread.h> 

 

       int pthread_create(pthread_t *thread,  

                          const pthread_attr_t *attr, 

                          void *(*start_routine) (void *),  

                          void *arg); 

 

       Compile and link with -pthread. 

Based on slides from Luiz F. Perrone 



Example 
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/* COMPILE WITH: gcc thread-ex.c -lpthread -o thread-ex */ 

#include <stdio.h> 

#include <pthread.h> 

#define NUM_THREADS 5 

#define SLEEP_TIME 3 

 

void *sleeping(void *); /* forward declaration to thread routine */ 

 

int main(int argc, char *argv[]) { 

int i; 

pthread_t tid[NUM_THREADS]; /* array of thread IDs */ 

for ( i = 0; i < NUM_THREADS; i++) 

  pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME); 

 

for ( i = 0; i < NUM_THREADS; i++) 

  pthread_join(tid[i], NULL); 

 

printf("main() reporting that all %d threads have terminated\n", i); 

return (0); 

} /* main */ 



Passing arguments to threads 

• A thread can take parameter(s) pointed by its arg and  

• can return a pointer to some memory location that stores 

• its results. Gotta be careful with these pointers!!! 
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void * sleeping(void *arg) { 

  int sleep_time = (int)arg; 

  printf("thread %ld sleeping %d seconds ...\n",  

  pthread_self(), sleep_time); 

  sleep(sleep_time); 

  printf("\nthread %ld awakening\n", pthread_self()); 

  return (NULL); 

} 



Activity! 
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Shared Memory Model 
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• All threads have access to the same global, shared memory 

• Threads also have their own private data (how?) 

• Programmers are responsible for protecting globally shared data 



Thread Safeness 
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Thread Safeness 
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Uses pointer to get to results; 

doesn’t see what it expected 


