
Operating System Design

Neda Nasiriani

Fall 2018
1

Threads

Concurrent vs. Parallel computing

• Concurrent execution on single-core system:

• Supports more than one task by allowing all the tasks to
make progress

• Parallelism on a multi-core system:

• Perform more than one task simultaneously

2

Multicore or Multiprocessor

• Increasing number of processing cores on computer systems

• Parallelism can be achieved

• Decrease the execution time

• What is the potential performance gain from adding another

computing core? (AMDAHL’S LAW)

• S is serial portion

• N processing cores

• If S=40% and N grows very large what is maximum speed up?

• 2.5 times

3

Threads

4

When multi-process architecture

makes sense?
• Web Server Example

• If you are designing a web server, you need to constantly listen to

possible incoming requests

• Also there could be 1000 of requests every second, how can you

address them all in a timely fashion?

• Word Editor Example

• Allow user to work on a very large file while providing spell

checking in the background (without pausing the editing)

• Apply the keystrokes to the document

• Automatically saving it without pausing the user work

5

Word Editor Example

• How can we achieve this based on the things we learnt?

• Creating a process for spell checking

• Let’s see how it looks!

• What happens when the user is entering new data in the parent

process? How can the child access it for spell checking?

6

Parent Process Child Process: Spell Checker

fork()

Word Editor Example

• How can we achieve this based on the things we learnt?

• Creating a process for spell checking

• Let’s see how it looks!

• What happens when the user is entering new data in the parent

process?

7

Parent Process Child Process: Spell Checker

fork()

What if the child process

had access to the data?

Multi-threaded Execution

• Can we achieve multiple executions using the same data and code?

• How can we have multiple threads of execution (different parts of the
code) with access to the same data?

• If we can have multiple executions. Then what info do we need for each
thread of execution?
• Stack

• Registers

8

Multi-threaded Execution

• Let’s think about the word editor example again

• What if the spell checker thread corrects a word spelling and at the

same time the user is changing that word in the editor thread?

• What can go wrong here?

• Inconsistency in the data section

9 Editor

Spell-check

Multi-threaded Execution

• Let’s think about the word editor example again

• What if the spell checker thread corrects a word spelling and at the

same time the user is changing that word in the editor thread?

• What can go wrong here?

10 editor

Spell-check

Can we mitigate this inconsistency?

YES, We can avoid this using

synchronization techniques that we

will see in chapter 5.

Web Server Example

• Assume the web server is servicing search request (google

search engine)

• Each request to be served is of similar nature (repetitive code)

and has to work on the same information (repetitive data)

• What if we could have multiple executions of the same search

code within the same process?

• Let’s see how it looks!

11

Multithreaded Server

Architecture

client server

request (1)

12

Based on slides from Luiz F. Perrone

Data Code Files

Multithreaded Server

Architecture

client server

request (1)

create new thread

to service request

13

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

resume

listening for

new requests

14

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

request (2)

15

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

request (2)

create new thread to

service request

16

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

th
re

a
d
(2

)

registers

stack

Multithreaded Server

Architecture

client server

resume

listening for

new requests

17

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

th
re

a
d
(2

)

registers

stack

Threads vs. Processes

• What are the advantages of Threads over Processes

• Light weight

• Processes are costly to create (around 30X time more time)

• Context switching processes can take up to 5X more time

• More Efficient

• Sharing data is easier

• PCBs are large data types while TCB are way smaller

• What are the disadvantages and challenges of Threads

• We need consistency when accessing the shared data

• We should implement synchronization method among threads

accessing the shared data

• Can complicates execution

18

FYR: Why Threads?

• Responsiveness: multiple threads can be executed in

parallel (in multi-core machines)

• Resource sharing: multiple threads have access to the

same data, sharing made easier

• Economy: the overhead in creating and managing threads

is smaller

• Scalability: more processors (or cores), more threads

running in parallel

19

Create Threads

20

NAME

 pthread_create - create a new thread

SYNOPSIS

 #include <pthread.h>

 int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

 Compile and link with -pthread.

Based on slides from Luiz F. Perrone

Example

21

/* COMPILE WITH: gcc thread-ex.c -lpthread -o thread-ex */

#include <stdio.h>

#include <pthread.h>

#define NUM_THREADS 5

#define SLEEP_TIME 3

void *sleeping(void *); /* forward declaration to thread routine */

int main(int argc, char *argv[]) {

int i;

pthread_t tid[NUM_THREADS]; /* array of thread IDs */

for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

printf("main() reporting that all %d threads have terminated\n", i);

return (0);

} /* main */

Passing arguments to threads

• A thread can take parameter(s) pointed by its arg and

• can return a pointer to some memory location that stores

• its results. Gotta be careful with these pointers!!!

22

void * sleeping(void *arg) {

 int sleep_time = (int)arg;

 printf("thread %ld sleeping %d seconds ...\n",

 pthread_self(), sleep_time);

 sleep(sleep_time);

 printf("\nthread %ld awakening\n", pthread_self());

 return (NULL);

}

Activity!

23

Shared Memory Model

24

Text

Data

Heap

Thread

1

Stack

Thread

2

Stack

Thread

n

Stack
...

• All threads have access to the same global, shared memory

• Threads also have their own private data (how?)

• Programmers are responsible for protecting globally shared data

Thread Safeness

25

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread Safeness

26

Thread

2

Thread

1

Thread

n
...

Thread 1 result

Library Storage

Library function (not thread-safe):

returns pointer to library storage

Thread Safeness

27

Thread

2

Thread

1

Thread

n
...

Thread 2 result Thread 1 result

Library Storage

Library function

(not thread-safe)

Thread Safeness

28

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread 2 result

Uses pointer to get to results;

doesn’t see what it expected

