
Operating System Design

Neda Nasiriani

Fall 2018
1

Threads

Why Threads?

• Threads use and exist within the process resources

• are able to be scheduled by the operating system

• run as independent entities

• How can this independent flow of execution be accomplished

for threads

• Stack pointer (and stack space)

• Registers

• Scheduling properties (such as policy or priority)

• Set of pending and blocked signals

• Thread specific data

 2

PCB vs TCB

3

https://computing.llnl.gov/tutorials/pthreads/#Overview

TCB

PCB

FYR:Why Threads?

• A thread exists within a process and uses the process resources

• Has its own independent flow of control as long as its parent process
exists and the OS supports it

• Duplicates only the essential resources it needs to be independently
schedulable

• May share the process resources with other threads that act equally
independently (and dependently)

• Dies if the parent process dies - or something similar

• Is "lightweight" because most of the overhead has already been
accomplished through the creation of its process.

• Because threads within the same process share resources: Changes
made by one thread to shared system resources (such as closing a file)
will be seen by all other threads

• Two pointers having the same value point to the same data

• Reading and writing to the same memory locations is possible, and
therefore requires explicit synchronization by the programmer

4

Why Threads?

• No Inter Process Communication (IPC) is necessary

• The only limit is the memory bandwidth which is way more

than the shared memory bandwidth as an IPC among processes

5

https://computing.llnl.gov/tutorials/pthreads/#Overview

When use threads?

• The program should be parallelizable and can be broken down

to independent tasks which can run in parallel

• “Several common models for threaded programs exist:

• Manager/worker: a single thread, the manager assigns work to

other threads, the workers

• Pipeline: a task is broken into a series of suboperations, each of

which is handled in series, but concurrently, by a different thread

• Peer: similar to the manager/worker model, but after the main

thread creates other threads, it participates in the work”

6

https://computing.llnl.gov/tutorials/pthreads/#Overview

How are Threads Scheduled?
• Assume process P creates 5 threads T_1, T_2, T_3, T_4, T_5 in this

order T_2, T_1, T_3, T_5, T_4

• Which one of these threads executes first?

• Which one of these threads finish its execution first?

• On which core is thread T_3 scheduled to run? (if there are 4 cores)

• The answer to all these questions is WE DON’T KNOW

• A good multi-threaded program successful execution should be
independent of order of execution of its threads

• What can we control?

• The pthreads API provides several routines that may be used to specify
how threads are scheduled for execution

• FIFO (first-in first-out)

• RR (round-robin)

• OTHER (operating system determines)

• pthreads API also provides the ability to set a thread's scheduling
priority value.

• The Linux operating system may provide a way to set the CPU core to
execute the process on using the sched_setaffinity routine.

7

https://computing.llnl.gov/tutorials/pthreads/man/sched_setaffinity.txt

Threads Synchronization

• If main() finishes before the created threads exit, all of the

threads will be terminated because the main thread of

execution is terminated

• How can we avoid this?

• If main thread calls pthread_exit() as the last thing it does, main()

will block and be kept alive to support the threads it created until

they are done.

• Using pthead_join(.) can block the thread to wait for the spawned

threads

8

Demo
./thread_join_retval

./thread_no_join_retval

 comment join, then comment pthread_exit in main

gcc -pthread thread_no_join_retval.c -o thread_no_join_retval -lm

9

User Threads and Kernel Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems,
including:

• Windows

• Solaris

• Linux

• Tru64 UNIX

• Mac OS X

10

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

11

Many to One

• Many user-level threads mapped

to single kernel thread

• One thread blocking causes all

to block

• Multiple threads may not run in

parallel on multicore system

because only one may be in

kernel at a time

• Few systems currently use this

model

• Examples:

• Solaris Green Threads

• GNU Portable Threads

12

One to One

• Each user-level thread maps to a kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted due to

overhead

• Examples

• Windows

• Linux

• Solaris 9 and later

13

Many-to-Many

• Allows many user level

threads to be mapped to many

kernel threads

• Allows the operating system

to create a sufficient number of

kernel threads

• Solaris prior to version 9

• Windows with the

ThreadFiber package

14

Two-level Model

• Similar to M:M, except that it

allows a user thread to be

bound to kernel thread

• Examples

• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

15

Shared Memory Model

16

• All threads have access to the same global, shared memory

• Threads also have their own private data (how?)

• Programmers are responsible for protecting globally shared data

Editor

Spell-check

Thread Safeness

17

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread Safeness

18

Thread

2

Thread

1

Thread

n
...

Thread 1 result

Library Storage

Library function (not thread-safe):

returns pointer to library storage

Thread Safeness

19

Thread

2

Thread

1

Thread

n
...

Thread 2 result Thread 1 result

Library Storage

Library function

(not thread-safe)

Thread Safeness

20

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread 2 result

Uses pointer to get to results;

doesn’t see what it expected

Create Threads

• (*start_routine) is a functin pointer to a function that returns a

void * and has one argument of type void *

• pthread_t is a unsigned long (%lu)
21

NAME

 pthread_create - create a new thread

SYNOPSIS

 #include <pthread.h>

 int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

 Compile and link with –pthread

Based on slides from Luiz F. Perrone

Thread Termination

• If any thread within a process calls exit, then the entire process terminates

• A thread can exit in three ways

1. Return from the start routine. The return value is the thread’s exit code

2. The thread can be canceled by another thread in the same process

3. The thread can call pthread_exit

 To allow other threads to continue execution, the main thread should

terminate by calling pthread_exit() rather than exit().

22

NAME

 pthread_exit – terminate calling thread

 void pthread_exit (void *retval);

Based on slides from Luiz F. Perrone

Thread Join and Return Value

• If a thread has return values from its start routine, it can send it to

other threads in the process by calling pthread_exit (void* retval) or

simply returning a pointer of type void * to the return value

• retval is a type-less pointer like the input argument for pthread_create

• How can other threads access this value?

• If a thread needs an input argument from another thread it can use join

function to block its execution until the other thread exits

23

NAME

 pthread_join – calling thread will block until the specific thread calls

 pthread_exit

 pthread_join (pthread_t tid, void **retval_ptr);

 retval_ptr has the return value of the thread with ID tid

Thread Input Argument and Return

Value (Output Argument)
• The typeless pointer passed to pthread_create and pthread_exit can

be used to pass the address of a structure containing more complex

information.

• Be careful that the memory used for the structure is still valid when

the caller has completed.

• If the input structure was allocated on the caller’s stack, for example,

the memory contents might have changed by the time the structure is

used.

• If a thread allocates an output structure on its stack and passes a

pointer to this structure to pthread_exit, then the stack might be

destroyed and its memory reused for something else by the time the

caller of pthread_join tries to use it.
24

Examples

25

Good idea?!?

Why?

Good idea?!?

Why?

Other Thread Operations

• Just as every process has a process ID, every thread has a thread

ID. Unlike the process ID, which is unique in the system, the

thread ID has significance only within the context of the process

to which it belongs.

• pthread_t data type can be implemented as a structure. Therefore,

a function must be used to compare two thread IDs.
26

NAME

 pthread_self – returns the thread ID

 pthread_t pthread_self (void);

NAME

 pthread_equal – compare thread IDs

 pthread_equal (pthread_t tid1, pthread_t tid2);

Activity Answer!

27

Example

28

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

Passing Multiple Arguments

29

Passing Multiple Arguments

30

Good idea?!?

Why?

Return Value – Bad Practice!

31

Return Value – Good Practice!

32

Multiple Threads

33

