Operating System Design

Threads
Computer Networks in 10 minutes!
Network Programming

Neda Nasiriani { | J
Fall 2018

Activity Answer
Continued!

Q u EStI O n 5 int pthread_create(pthread _t *thread,

const pthread_attr_t *attr,

vold * suli(veld *) void *(*start_routine) (void *),
int * val = (int *)a; void *arg);
int result = 0;
for (int i = 1; 1 <= *val; i++){
result += i;

}
printf ("Running thread %lu value in thread %d \n",pthread self(),result):;

return (NULL):

Question 6

int main () {
int val = 100;
int * a = &val;
void * (*func) (void *) = ∑

pthread t id;

int err:

err = pthread create(&id, NULL, func, (void *)a):
printf ("thread create ret wval %d\n",err):
pthread join(id, NULL):;

return 0;

Passing Multiple Arguments: Q7

struct input{
int a;
inkt i

}7

void * sum(void * a) {
struct input * val = (struct input *)a;
int result = val->a + val->b;
return ((void *) &result):;

int main() {
struct input args:;
void * retwval:;
args.a = 10;
args.b = 20;
pthread t id;
int err;

err = pthread create(&id, NULL, sum, (void *)&args):
printf ("thread create ret val %d\n",err):;

pthread join(id, &retwval):

printf ("thread return value is %d\n", (*(int *)retwval)):
return 0;

Passing Multiple Arguments

void * sum(void * a){

int * val = (int *)a; :
?Lﬁt re:lallt =(él;1)a Good idea?!?
for (int i = 1; i <= *val; i++){ Why?

result += i;

}
printf ("Running thread %lu value in thread %d \n",pthread self(),result):;
return (NULL):

Return Value — Bad Practice!

struct input{
int a;
inkt i

}7

void * sum(void * a) {
struct input * val = (struct input *)a;
int result = val->a + val->b;
((void *) &result):

int main() {
struct input args:;

void * retval; =
args.a = 10; thread create ret val 0
Brgpel = S thread return value is 32609
pthread t id;

int err;

O

err = pthread create(&id, NULL, sum, (void *) &args):
printf ("thread create ret wval %d\n",err):

pthread join(id, &retval);

printf ("thread return value is %d\n", (*(int *)retval)):
return 0;

Return VValue — Good Practice!

}z

struct input{

int a:;
int: bz
int result;

voi

int

d * sum(void * a){

struct input * val = (struct input *)a;
val -> result = val->a + val->b;

return ((void *) a):

i B thread create ret wval 0
SEEREE 2IDHE g thread return value is 30

void * retval;
args.a = 10;
args.b = 20;
pthread t id;
int err:;

err = pthread create(&id, NULL, sum, (void *)&args):

printf ("thread create ret val %d\n",err):;

pthread join(id, &retval):;

printf ("thread return value is %d\n", ((struct input *)retval)->result):
return 0;

Multiple Threads

struct input{

int a; #define NUM THREADS 5
int b; struct input args[NUM THREADS];
int result; pthread t ids[NUM THREADS]:
}7
void * sum(void * a) {
struct input * val = (struct input *)a:;
val -> result = val->a + val->b; thread 0 return val 0
printf ("Thread with index %d is running now\n",val->a/10): thread 1,ret9rn val 9 .
return ((void *) a);: Thread with index 0 is running
thread 2 return val O
} Thread with index 1 is running
Thread with index 2 is running
thread 3 return val 0
thread 4 return val 0
thread return value is 0
int main () { thread return value is 30
void * retval [NUM_THREADS]; Thread with index 3 is running
E (int i=0; i < NUM _THREADS; i++) { Thread with index 4 is running
args[i]l.a = i * 10; thread return value is 60
args[i] .b = i * 20s thread return value is 90
thread return value is 120
int err:;

err = pthread create(&ids[i], NULL, sum, (void *)&args[i]):
printf ("thread %d return val %d\n",i,err):

for (int i = 0; i < NUM THREADS; i++) {
pthread join(ids[i], &retval[i]):
printf ("thread return value is %d\n", ((struct input *)retval[i])->result):

Discussion: Activity
Operating System
Design

Quiz 03!

Computer Network

» How does two computers communicate?

* Internet is connecting millions of users all over the globe, who are
connecting using different devices
* How does it work?!?

« The key to Internet success s its abstract design and protocols based
on those design paradigms (guidelines)

* This architecture which is a layered architecture allows for
communication between different nodes as long as they follow the
same protocols

Remember your last lab on pipes

Pipes are an implementation of message passing

How did you send an integer and string using the pipe?
* The idea of an abstraction

To have a unifying model

To encapsulate this model in an object which provides an interface for [J
other layers 11

To hide the details of how the object is implemented from the users of
the object.

Open Systems Interconnection

(OSI) Model

OSI model is the standard proposed for computer networks
Partitions the network functionality into seven layers
Reference model for a protocol graph.

Physical layer handles the transmission of raw bits over a
communications link (wireless, fiber, coax)

The data link layer then collects a stream of bits into a
larger aggregate called a frame.
Network adaptors, along with device drivers running in the
node’s OS, typically implement the data link level.

The network layer handles routing packets among nodes
within a packet-switched network.

The Transport layer then implements a process-to-
process channel. Here, the unit of data exchanged is
commonly called a message rather than a packet or a
frame.

Hui Zhang, 15-441 Networking, Fall 2007, School of computer science, CMU.

7
6
5
4
3
2

1

Application

Presentation

Transport

Network

Physical

OSI Model on Different Nodes

t End host
One or more nodes

within the network

Computer Networks, Peterson and Davie

Sockets

» How can two processes on two different machines talk to each other
on the web?

« Asocket is defined as an endpoint for communication

+ Concatenation of IP address and port —a number included at start of
message packet to differentiate network services on a host

» The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

< Communication consists between a pair of sockets
 All ports below 1024 are well known, used for standard services

« Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Connection Types

 Two types of connection
(transport layer)

Connection-oriented (TCP)
Connectionless (UDP)

TCP Connections

* Service
OSI Transport Layer

* Reliable byte stream (interpreted by application)

* 16-bit port space allows multiple connections on a single host
« Connection-oriented

— Set up connection before communicating

— Tear down connection when done

www.cs.uluc.edu/class/fa07/cs438

TCP Service

* Reliable Data Transfer

— Guarantees delivery of all data

— Exactly once if no catastrophic failures
* Sequenced Data Transfer

— Guarantees in-order delivery of data

— If A sends M1 followed by M2 to B, B never receives M2
before M1

* Regulated Data Flow

— Monitors network and adjusts transmission appropriately
— Prevents senders from wasting bandwidth

— Reduces global congestion problems

» Data Transmission

— Full-Duplex byte stream

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

» Connection oriented (streams)
—sd = socket(PF_INET, SOCK_STREAM, 0);

e For the internet (PF_INET) this corresponds to TCP
* socket() returns a socket descriptor, an int similar to a file descriptor
 Use connect() on a socket that was previously created using socket():
* err = connect(int sd, struct sockaddr*, socklen_t addrlen);
+ *Remote address and port are in
struct sockaddr:

struct sockaddr_in {

u_short sa_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

www.cs.uluc.edu/class/fa07/cs438

Sample TCP communication

* Transport Control Protocol (TCP)

host or host or
server server

controlled by =
<~ app developer
pro?ess proct:ess
socl.:ket | | soc%ket |

¥

TCP‘with TCP with

buffers, Internet buffers,

variables | variables

www.cs.uluc.edu/class/fa07/cs438

TCP connection from OSI P.O.V.

User Process User Process User Process | Application
__-__.-.L|_L---—-1—L----—--- Socket API
TCP Ubp Transport
IP Network
Hardware Interface Link

www.cs.uluc.edu/class/fa07/cs438

TCP: Client

socket() create the socket descriptor

connect() connect to the remote server.

read(),write() communicate with the server

close() end communication by closing socket descriptor

TCP: Server

socket() create the socket descriptor

bind() associate the local address

listen() wait for incoming connections from clients
accept() accept incoming connection

read(),write() communicate with client

close() close the socket descriptor

