
Operating System Design

Neda Nasiriani

Fall 2018
1

Computer Networks in 10 minutes!

Network Programming

Computer Network

• How does two computers communicate?

• Internet is connecting millions of users all over the globe, who

are connecting using different devices

• How does it work?!?

• The key to Internet success is its abstract design and protocols

based on those design paradigms (guidelines)

2

Computer Network

• This architecture which is a layered architecture allows for

communication between different nodes as long as they follow

the same protocols

• Remember your last lab on pipes

• Pipes are an implementation of message passing

• How did you send an integer and string using the pipe?

• The idea of an abstraction

• To have a unifying model

• To encapsulate this model in an object which provides an interface

for other layers

• To hide the details of how the object is implemented from the

users of the object.

3

Open Systems Interconnection

(OSI) Model
• OSI model is the standard proposed for computer

networks

• Partitions the network functionality into seven layers

• Reference model for a protocol

• Physical layer?

• handles the transmission of raw bits over a

communications link (wireless, fiber, coax)

• The data link layer?

• collects a stream of bits into a larger aggregate called a

frame.

• Network adaptors, along with device drivers running in

the node’s OS, typically implement the data link level. 4

Hui Zhang, 15-441 Networking, Fall 2007, School of computer science, CMU.

Open Systems Interconnection

(OSI) Model
• The network layer?

• handles routing packets among nodes within a packet-

switched network.

• The Transport layer then implements a process-

to-process channel.

• Here, the unit of data exchanged is commonly called a

message rather than a packet or a frame.

5

Hui Zhang, 15-441 Networking, Fall 2007, School of computer science, CMU.

OSI Model on Different Nodes

6

Computer Networks, Peterson and Davie

Sockets

• How can two processes on two different machines talk to each other

on the web?

• A socket is defined as an endpoint for communication

• Concatenation of IP address and port – a number included at start of

message packet to differentiate network services on a host

• The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

• Communication consists between a pair of sockets

• All ports below 1024 are well known, used for standard services

• Special IP address 127.0.0.1 (loopback) to refer to system on which

process is running

Socket Communication

Connection Types

• Two types of connection

(transport layer)

• Connection-oriented (TCP)

• Connectionless (UDP)

TCP Connections

• Service

• OSI Transport Layer

• Reliable byte stream (interpreted by application)

• 16‐bit port space allows multiple connections on a single host

• Connection‐oriented

 – Set up connection before communicating

 – Tear down connection when done

10

www.cs.uluc.edu/class/fa07/cs438

TCP Service

• Reliable Data Transfer

• Guarantees delivery of all data

• Exactly once if no catastrophic failures

• Sequenced Data Transfer

• Guarantees in‐order delivery of data

• If A sends M1 followed by M2 to B, B never receives M2 before
M1

• Regulated Data Flow

• Monitors network and adjusts transmission appropriately

• Prevents senders from wasting bandwidth

• Reduces global congestion problems

• Data Transmission

• Full‐Duplex byte stream 11

www.cs.uluc.edu/class/fa07/cs438

Sample TCP communication

• Transport Control Protocol (TCP)

12

www.cs.uluc.edu/class/fa07/cs438

TCP connection from OSI P.O.V.

13

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

• Connection oriented (streams)

• sd = socket(PF_INET, SOCK_STREAM, 0);

14

Default Protocol

TCP Connection Establishment

• For the internet (PF_INET) this corresponds to TCP

• socket() returns a socket descriptor, an int similar to a file

descriptor

• For a server, we need to associate a well-known address with

the server’s socket on which client requests will arrive

• Clients need a way to discover the address to use to contact a

server

• server reserves an address and register it in /etc/services

• Register with a name service

15

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

• Use connect() on a socket that was previously created using

socket():

• If we’re dealing with a connection-oriented network service,

we need to create a connection between the socket of the

process requesting the service (the client) and the process

providing the service (the server)

• The address we specify with connect is the address of the

server with which we wish to communicate. If sockfd is not

bound to an address, connect will bind a default address for the

caller.

16

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

17

www.cs.uluc.edu/class/fa07/cs438

TCP: Client

• socket() create the socket descriptor

• connect() connect to the remote server.

• read(),write() communicate with the server

• close() end communication by closing socket descriptor

18

TCP: Server

• socket() create the socket descriptor

• bind() associate the local address

• listen() wait for incoming connections from clients

• accept() accept incoming connection

• read(),write() communicate with client

• close() close the socket descriptor

19

Listen

20

• A server announces that it is willing to accept connect requests by calling

the listen function

• The backlog argument provides a hint to the system regarding the number

of outstanding connect requests that it should enqueue on behalf of the

process

Accept Connections

• Once a server has called listen, the socket used can receive

connect requests. We use the accept function to retrieve a

connect request and convert it into a connection

• The file descriptor returned by accept is a socket descriptor

that is connected to the client that called connect

• The original socket passed to accept is not associated with the

connection, but instead remains available to receive additional

connect requests

21

Quiz 03!

22

FYR

23

Thread Libraries

• Thread library provides programmer with API for

creating and managing threads

• Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

• Specification, not implementation

• API specifies behavior of the thread library,

implementation is up to development of the library

• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

Threading Issues

• Semantics of fork() and exec() system calls

• Signal handling

• Synchronous and asynchronous

• Thread cancellation of target thread

• Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all

threads?

• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the

running process including all threads

Signal Handling

n Signals are used in UNIX systems to notify a process

that a particular event has occurred.

n A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

n Every signal has default handler that kernel runs

when handling signal

l User-defined signal handler can override default

l For single-threaded, signal delivered to process

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

l Deliver the signal to the thread to which the signal

applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the

process

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

• Asynchronous cancellation terminates the target thread

immediately

• Deferred cancellation allows the target thread to periodically

check if it should be cancelled

• Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

• If thread has cancellation disabled, cancellation remains pending

until thread enables it

• Default type is deferred

• Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()

• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have

its own copy of data

• Useful when you do not have control over the thread

creation process (i.e., when using a thread pool)

• Different from local variables

• Local variables visible only during single function

invocation

• TLS visible across function invocations

• Similar to static data

• TLS is unique to each thread

 Scheduler Activations
• Both M:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

• Typically use an intermediate data structure
between user and kernel threads – lightweight
process (LWP)

• Appears to be a virtual processor on which
process can schedule user thread to run

• Each LWP attached to kernel thread

• How many LWPs to create?

• Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

• This communication allows an application to
maintain the correct number kernel threads

