Operating System Design

Computer Networks in 10 minutes!
Network Programming

Neda Nasiriani { | J
Fall 2018

Computer Network

How does two computers communicate?

Internet is connecting millions of users all over the globe, who
are connecting using different devices

How does It work?!?

The key to Internet success is its abstract design and protocols
based on those design paradigms (guidelines)

Computer Network

* This architecture which is a layered architecture allows for
communication between different nodes as long as they follow
the same protocols

Remember your last lab on pipes
Pipes are an implementation of message passing
How did you send an integer and string using the pipe?

* The idea of an abstraction
To have a unifying model

To encapsulate this model in an object which provides an interface
for other layers

To hide the details of how the object is implemented from the
users of the object. [3 J

Open Systems Interconnection
(OSI) Model

OSI model is the standard proposed for computer
networks

Application

Partitions the network functionality into seven layers

7
6
Reference model for a protocol 5 m
j 2
Physical layer: ’
handles the transmission of raw bits over a
;
2

communications link (wireless, fiber, coax)

The data link layer? m

collects a stream of bits into a larger aggregate calleda 4 Physical
frame.

Network adaptors, along with device drivers running in
the node’s OS, typically implement the data link level.

Hui Zhang, 15-441 Networking, Fall 2007, School of computer science, CMU.

Open Systems Interconnection
(OSI) Model

* The network layer?
handles routing packets among nodes within a packet-

switched network.

» The Transport layer then implements a process- m

7
6
5
to-process channel.
Here, the unit of data exchanged is commonly called a
3
2

Application

message rather than a packet or a frame.
1 Physical

Hui Zhang, 15-441 Networking, Fall 2007, School of computer science, CMU.

OSI Model on Different Nodes

t End host
One or more nodes

within the network

Computer Networks, Peterson and Davie

Sockets

» How can two processes on two different machines talk to each other
on the web?

« Asocket is defined as an endpoint for communication

+ Concatenation of IP address and port —a number included at start of
message packet to differentiate network services on a host

» The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

< Communication consists between a pair of sockets
 All ports below 1024 are well known, used for standard services

« Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Connection Types

 Two types of connection
(transport layer)

Connection-oriented (TCP)
Connectionless (UDP)

TCP Connections

* Service
OSI Transport Layer

* Reliable byte stream (interpreted by application)
* 16-bit port space allows multiple connections on a single host
« Connection-oriented

— Set up connection before communicating

— Tear down connection when done

www.cs.uluc.edu/class/fa07/cs438

TCP Service

Reliable Data Transfer

Guarantees delivery of all data

Exactly once if no catastrophic failures
Sequenced Data Transfer

Guarantees in-order delivery of data

If A sends M1 followed by M2 to B, B never receives M2 before
M1

Regulated Data Flow
Monitors network and adjusts transmission appropriately
Prevents senders from wasting bandwidth
Reduces global congestion problems
Data Transmission
Full-Duplex byte stream

www.cs.uluc.edu/class/fa07/cs438

Sample TCP communication

* Transport Control Protocol (TCP)

host or host or
server server

controlled by =
<~ app developer
pro?ess proct:ess
socl.:ket | | soc%ket |

¥

TCP‘with TCP with

buffers, Internet buffers,

variables | variables

www.cs.uluc.edu/class/fa07/cs438

TCP connection from OSI P.O.V.

User Process User Process User Process | Application
__-__.-.L|_L---—-1—L----—--- Socket API
TCP Ubp Transport
IP Network
Hardware Interface Link

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

» Connection oriented (streams)
- sd = socket(PF_INET, SOCK_STREA I

#include <sys/socket.h>

int socket (int agbomain, int #pe, int profocol) ;

Returns: file (socket) descriptor if OK, —1 on error '

Domain | Description
AF_INET IPv4 Internet domain
AF_INET6 IPv6 Internet domain (optional in POSIX.1)
AF_UNIX UNIX domain
AF_UNSPEC | unspecified

Type Description
SOCK_DGRAM fixed-length, connectionless, unreliable messages
SOCK_RAW datagram interface to IP (optional in POSIX.1)
SOCK_SEQPACKET | fixed-length, sequenced, reliable, connection-oriented messages
SOCK_STREAM sequenced, reliable, bidirectional, connection-oriented byte streams |

TCP Connection Establishment

For the internet (PF_INET) this corresponds to TCP
socket() returns a socket descriptor, an int similar to a file
descriptor

For a server, we need to associate a well-known address with
the server’s socket on which client requests will arrive
Clients need a way to discover the address to use to contact a
server
server reserves an address and register it in /etc/services
Register with a name service

#include <sys/socket.h>
int bind(int socff@, const struct sockaddr *addi, socklen t /lew): (
| 15J

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

+ Use connect() on a socket that was previously created using
socket():

int connect (int socff@d, const struct sockaddr *aeaa, socklen t /lew); '

* If we’re dealing with a connection-oriented network service,
we need to create a connection between the socket of the
process requesting the service (the client) and the process
providing the service (the server)

 The address we specify with connect is the address of the
server with which we wish to communicate. If sockfd i1s not
bound to an address, connect will bind a default address for the

caller. [16]

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

struct sockaddr in ({
sa family t sin family; /* address family */
in port t sin port; /* port number */
struct in addr sin_ addr; /* IPv4 address */
unsigned char sin zero[8]; /* filler */

}z

www.cs.uluc.edu/class/fa07/cs438

TCP: Client

socket() create the socket descriptor

connect() connect to the remote server.

read(),write() communicate with the server

close() end communication by closing socket descriptor

TCP: Server

socket() create the socket descriptor

bind() associate the local address

listen() wait for incoming connections from clients
accept() accept incoming connection

read(),write() communicate with client

close() close the socket descriptor

Listen

« Aserver announces that it is willing to accept connect requests by calling
the listen function
» The backlog argument provides a hint to the system regarding the number

of outstanding connect requests that it should enqueue on behalf of the
process

int listen(int sockf@, int backlog) ;

Accept Connections

+ Once a server has called listen, the socket used can receive
connect requests. We use the accept function to retrieve a
connect request and convert it into a connection

* The file descriptor returned by accept is a socket descriptor
that is connected to the client that called connect

 The original socket passed to accept is not associated with the
connection, but instead remains available to receive additional
connect requests

int accept (int socf7d, struct sockaddr *restrict aadr,
socklen t *restrict /Jew):

(2]

Returns: file (socket) descriptor if OK, —1 on error '

Quiz 03!

FYR

Thread Libraries

» Thread library provides programmer with APl for
creating and managing threads
» Two primary ways of implementing
Library entirely in user space
Kernel-level library supported by the OS

Pthreads

» May be provided either as user-level or kernel-level

- APOSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

- Specification, not implementation

* API specifies behavior of the thread library,
Implementation is up to development of the library

« Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

Threading Issues

Semantics of fork() and exec() system calls

Signal handling
Synchronous and asynchronous
Thread cancellation of target thread
Asynchronous or deferred
Thread-local storage

Scheduler Activations

Semantics of fork() and exec()

* Does £ork () duplicate only the calling thread or all
threads?

Some UNIXes have two versions of fork

- exec () usually works as normal — replace the
running process including all threads

Signal Handling

Signals are used in UNIX systems to notify a process
that a particular event has occurred.
A signal handler is used to process signals

Signal is generated by particular event

Signal is delivered to a process

Signal is handled by one of two signal handlers:
default
user-defined

Every signal has default handler that kernel runs
when handling signal
User-defined signal handler can override default
For single-threaded, signal delivered to process

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

Deliver the signal to the thread to which the signal
applies

Deliver the signal to every thread in the process
Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the
process

Thread Cancellation

Terminating a thread before it has finished
Thread to be canceled is target thread

Two general approaches:

Asynchronous cancellation terminates the target thread
Immediately

Deferred cancellation allows the target thread to periodically
check if it should be cancelled

Pthread code to create and cancel a thread:
pthread t tid;

/* create the thread */
pthread create (&tid, 0, worker, NULL) ;

/% cancel the thread x/
pthread-cancel (tid) ;

r Thread Cancellation (Cont.)

+ Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

Mode State Type
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

- |If thread has cancellation disabled, cancellation remains pending
until thread enables it
* Default type is deferred

Cancellation only occurs when thread reaches cancellation point
l.e. pthread testcancel ()
Then cleanup handler is invoked

* On Linux systems, thread cancellation is handled through signals

Thread-Local Storage

Thread-local storage (TLS) allows each thread to have
Its own copy of data

Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)
Different from local variables

Local variables visible only during single function
Invocation

TLS visible across function invocations
Similar to static data
TLS is unique to each thread

r Scheduler Activations

+ Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

« Typically use an intermediate data structure
between user and kernel threads — lightweight

—— gl nnead

Sy)

process (LWP) LWP | =— lightweight process
Appears to be a virtual processor on which .
process can schedule user thread to run |k = kemeltnreac

Each LWP attached to kernel thread
How many LWPs to create?

» Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

 This communication allows an application to
maintain the correct number kernel threads

