Operating System Design

Processes Synchronization

Neda Nasiriani { | J
Fall 2018

Process Synchronization

Get Help from Hardware for Locks

» What was the problem here?!?

How to have a working lock?

+ Can this be fixed if we were able to test and set the value of
lock in one atomic (uninterruptible) operation?

No interrupts

Test and Set Instruction

 There is hardware support for such instructions

* The whole instruction will be executed as one uninterruptible
unit of operation

* One example of such instructions: Test_and_Set

boolean test and set(boolean *target) {
boolean rv = *target;
*target = true;

return rv;

}

1.Executed atomically
2.Returns the original value of passed parameter
3.Set the new value of passed parameter to “TRUE”.

Lock using Test and Set

- lock initialized to false
* Let’s use the test and set operation for implementing our lock!

do {
while (test._and set(&lock))
; /* do nothing */
/* critical section */

lock = false;

/* remainder section */
} while (true);

Compare and Swap Instruction

int compare and swap(int *value, int expected, int new value) ({
int temp = *value;

if (*value == expected)
*value = new._value;

return temp;

}

1.Executed atomically
2.Returns the original value of passed parameter “value”

3.Set the variable “value” the value of the passed parameter
“new_value” but only if “value” ==“expected”. That is, the
swap takes place only under this condition.

[7)

Lock using Compare and Swap

* lock initialized to 0

do {
while (compare and swap(&lock, 0, 1) != 0)
; /* do nothing */
/* critical section */

lock = 0;

/* remainder section */
} while (true);

Is this a Valid CS solution?

Groups of 3

 Two shared variables
boolean waiting[n] = false
boolean lock = false
Note: key is local variable
* Does this solution satisfy
Mutual Exclusion
Progress
Bounded Waiting

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)
key = test.and set(&lock);
waiting[i] = false;

/* critical section */
= 4+ 1) NES

while ((j != i) && !'waiting[j])
3 =Ly * 1) % n;

if (j == 1)
lock = false;
else

waiting[j] = false;

/* remainder section */
} while (true);

Mutex (Mutual Exclusion) Locks

Solutions seen so far are complicated!

So Operating Systems designers build software tools to solve
CS problem

A process should acquire the lock in the entry section then is
allowed to enter its CS

After the process is done, it should release its lock in the exit
section

do {

acquire lock

critical section

| release lock |

remainder section

} while (true);

Mutex Lock

 The function acquire is a blocking operation
- Called also spinlock

acquire() {
while (!available)
; /* busy wait */
available = false;;

release() {
available = true;
}

}

Counting Locks

* What if
we have more than one copy of the resource?
Or want to allow up to n processes into the critical section?

* We need a counting lock...

Semaphores

 Synchronization tool that provides more sophisticated ways (than
Mutex locks) for process to synchronize their activities.

- Semaphore S — integer variable
+ Can only be accessed via two indivisible (atomic) operations

wait () and signal ()
Originally called P () and V ()

wait(S) { .
while (S <=0) signal(S) {
; // busy wait S++;

Sasl

}

Semaphores Continued

Counting semaphore — integer value can range over an unrestricted domain
Binary semaphore — integer value can range only between 0 and 1
Same as a mutex lock
Can solve various synchronization problems
Consider P, and P, that require S; to happen before S,
Create a semaphore “synch” initialized to 0
Pl:
S;’;
signal (synch) ;
P2:
wait(synch);
S,

Can we avolid busy waliting?!?

acquire() { "
vhile (lavailable) | ¥ait(8) { jitingli] = true;
; /* busy wait */ ¥ulle (f s=0) §y1= Eme; [i] && key)
: N - . ; ile (waitingli ey
available = false;; S""" /7 busy wait key = test_and set(&lock);
; release() ’ e e =
| — S } signal (S) {

do {
while (compare and swap(&lock, 0, 1) != 0)

S++; * critical section */
i + 1) % n;

e ((j '= i) && 'waiting[jl)
J=(+1) 4n;

}

if (j == i)

NAaemle - L0 v o

; /* do nothing */

/* critical section */
lock = 0;

/* remainder section */
} while (true);

do {
while (test._and set(&lock))
; /* do nothing */
/* critical section */

lock = false;

/* remainder section */
} while (true);

No Busy Waiting!

 With each semaphore there is an associated waiting queue
* Each entry in a waiting queue has two data items:

value (of type integer) —_—

pointer to next record in the list int value;
struct process *list;

} semaphore;

 Two operations:
block — place the process invoking the operation on the
appropriate waiting queue
wakeup — remove one of processes in the waiting queue and place

it in the ready queue

No Busy Waliting!

 Two operations:
block — place the process invoking the operation on the
appropriate waiting queue
wakeup — remove one of processes in the waiting queue and place

It in the ready queue

wait (semaphore *S) {
S->value--;
if (S->value < 0) {
add this process to S->1ist;

block();

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->1ist;

wakeup(P) ;

Back to Producer
Consumer Problem ©

Producer-Consumer: Semaphores

while (true) {
/* produce an item in next_produced */

while (counter == BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) ’ BUFFER SIZE;
counter++;

while (true) {
while (counter == 0)
; /* do nothing */

next consumed = buffer[out];

out = (out + 1) % BUFFERSIZE;
counter--;

/* consume the item in next consumed */

}

Producer-Consumer: Semaphores

while (true) {
/* produce an item in next_produced */

while (counter == BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;
counter++;

while (true) {

while (counter == 0)
; /* do nothing */

next consumed = buffer [out];

out = (out + 1) % BUFFERSIZE;
counter--;

/* consume the item in next _consumed */

}

Producer-Consumer with Semaphores!

 Here we have BUFFER_SIZE number of resources (empty
slots) and we want the producer to wait for an empty slot while
the consumer waits for a full slot

We can use a counting semaphore for empty slots
We also need to check if there is any full slots in the buffer

in 6

Producer-Consumer with Semaphores!

sem t empty,; full;

sem init(&full, 0, 0):;
sem init(&empty, O, BUFFER SIZE);

while (true) {
/* produce an item */
sem wait (&empty) ;

buffer[in] = next produced;

sem post (&full) ;

Does this satisfy

mutual exclusion?

in = (in + 1) % BUFFER SIZE;

while (true) {
/* consume an item */
sem wait (&full);

next consumed = buffer[out];
out = (out + 1)% BUFFER SIZE;

sem post (&empty) ;

Producer-Consumer with Semaphores!

Now lets assume 2
Processes are

sem init(&full, 0, 0):; . .

sem_init (sempty, 0, BUFFER SIZE); producmg Iitems and

sem t empty,; full;

putting it into buffer
concurrently!!!
On board!

while (true) {
/* consume an item */
sem wait (&full):;

while (true) {
/* produce an item */
sem wait (&empty) ;

next consumed = buffer[out];

butfer[in] = next produced; out = (out + 1)% BUFFER SIZE;

in = (in + 1) % BUFFER SIZE;

sem post (&full) ; ; sem_post (&empty) ;

Producer-Consumer with Semaphores!

sem t empty, full, mutex;

sem init(&full, 0, 0):
sem init (&empty, 0, BUFFER SIZE) ;
sem init (&mutex, 0, 1);

while (true) {
/* produce an item */
sem wait (&mutex) ;
sem wait (&empty) ;

buffer[in] = next produced;
in = (in + 1) % BUFFER SIZE;

sem post (&full) ;
sem post (&mutex) ;

How can we fix this?

\

while (true) {
/* consume an item */
sem wait (&mutex) ;
sem wait (&full);

next consumed = buffer[out];
out = (out + 1)% BUFFER SIZE;

sem post (&empty) ;
sem post (&mutex)

Producer-Consumer with Semaphores!

sem t empty, full, mutex;

sem init(&full, 0, 0);
sem _init (&empty, 0, BUFFER SIZE);
sem init (&mutex, 0, 1);

while (true) {
/* produce an item */
sem wait (&empty) ;

sem wait (&mutex) ;
buffer[in] = next produced;

sem post (&mutex) ;

sem post (&full) ;

in = (in + 1) % BUFFER_SIZE;

\ 4

Lhile(true){
/* consume an item */
sem wait (&full) ;

sem wait (&mutex) ;
next consumed = buffer[out];
out = (out + 1)% BUFFER SIZE;
sem post (&mutex) ;

sem post (&empty) ;

Producer-Consumer with Semaphores!
SGG Book version!

do {

G . . - .
/* produce an item in next produced */ int n;

semaphore mutex
semaphore empty
semaphore full = 0

wait (empty) ;
wait (mutex) ;

/* add next_produced to the buffer */

siéﬁéi(ﬁutex);
signal (full);
} while (true);

do {
wait (full);
wait (mutex) ;

/* remove an item from buffer to next consumed */

siéﬁ&idmutex);
signal (empty) ;

/* consume the item in next consumed */

} whiie.(érue);

