
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Synchronization

Process Synchronization

2

Get Help from Hardware for Locks

• What was the problem here?!?

3

do {

 while (lock);

 lock = 1;

 critical section

 lock = 0;

 remainder section

 } while (true);

How to have a working lock?

• Can this be fixed if we were able to test and set the value of

lock in one atomic (uninterruptible) operation?

4

do {

 while (lock);

 lock = 1;

 critical section

 lock = 0;

 remainder section

 } while (true);

No interrupts

Test and Set Instruction

• There is hardware support for such instructions

• The whole instruction will be executed as one uninterruptible
unit of operation

• One example of such instructions: Test_and_Set

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

5

Atomically

Lock using Test and Set

• lock initialized to false

• Let’s use the test and set operation for implementing our lock!

6
Mutual Exclusion: Pass Bounded Waiting: ?!?

Compare and Swap Instruction

1.Executed atomically

2.Returns the original value of passed parameter “value”

3.Set the variable “value” the value of the passed parameter
“new_value” but only if “value” ==“expected”. That is, the
swap takes place only under this condition.

 7

Lock using Compare and Swap

• lock initialized to 0

8
Mutual Exclusion: Pass Bounded Waiting: ?!?

Is this a Valid CS solution?

Groups of 3
• Two shared variables

• boolean waiting[n] = false

• boolean lock = false

• Note: key is local variable

• Does this solution satisfy

• Mutual Exclusion

• Progress

• Bounded Waiting

9

Mutex (Mutual Exclusion) Locks

• Solutions seen so far are complicated!

• So Operating Systems designers build software tools to solve

CS problem

• A process should acquire the lock in the entry section then is

allowed to enter its CS

• After the process is done, it should release its lock in the exit

section

10

Mutex Lock

• The function acquire is a blocking operation

• Called also spinlock

11

Atomically

Counting Locks

• What if

• we have more than one copy of the resource?

• Or want to allow up to n processes into the critical section?

• We need a counting lock…

12

Semaphores

• Synchronization tool that provides more sophisticated ways (than
Mutex locks) for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

• Originally called P() and V()

13
Atomically

Semaphores Continued

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

 14

Can we avoid busy waiting?!?

15

No Busy Waiting!

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue and place

it in the ready queue

16

No Busy Waiting!

• Two operations:

• block – place the process invoking the operation on the

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue and place

it in the ready queue

17

Back to Producer

Consumer Problem 

18

Producer-Consumer: Semaphores

19

Does using a lock

on counter resolve

the issue?

Producer-Consumer: Semaphores

20

Candid for semaphores!

Producer-Consumer with Semaphores!

• Here we have BUFFER_SIZE number of resources (empty

slots) and we want the producer to wait for an empty slot while

the consumer waits for a full slot

• We can use a counting semaphore for empty slots

• We also need to check if there is any full slots in the buffer

21

out

in

0

1

2

3 4

5

6

7

22

Producer-Consumer with Semaphores!

Does this satisfy

mutual exclusion?

23

Producer-Consumer with Semaphores!
Now lets assume 2

processes are

producing items and

putting it into buffer

concurrently!!!

On board!

24

Producer-Consumer with Semaphores!

How can we fix this?

Does this work?

25

Producer-Consumer with Semaphores!

Working Version!

Producer-Consumer with Semaphores!

SGG Book version!

26

