
Operating System Design

Neda Nasiriani

Fall 2018
1

Processes Synchronization

Process Synchronization

2

Condition Variables

• Yet another synchronization tool

• If we want to check a if a condition holds or not before

continuing the execution (parent process checking if the child

process is done)

• condition variable is an explicit queue

• Threads can put themselves on the queue when the condition does

not hold (by invoking wait on the condition)

• Some other thread, when it changes the condition, can then wake

one (or more) of those waiting threads and thus allow them to

continue (by invoking signal on the condition).

• Difference from semaphores?

• Does not keep a count but only put processes into sleep or wake

them based on the state of the condition

3

Semaphores

• Synchronization tool that provides more sophisticated ways (than
Mutex locks) for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

• Originally called P() and V()

4
Atomically

Can we avoid busy waiting?!?

5

No Busy Waiting!

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue and place

it in the ready queue

6

No Busy Waiting!

• Two operations:

• block – place the process invoking the operation on the

appropriate waiting queue

• wakeup – remove one of processes in the waiting queue and place

it in the ready queue

7

Slides by Felipe L. Perrone

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, that is

almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the monitor

type:

A procedure can access only local

variables defined within the monitor.

There cannot be concurrent access to

procedures within the monitor (only one

process/thread can be active in the monitor

at any given time).

Condition variables: queues are associated

with variables. Primitives for

synchronization are wait and signal.

monitor mName {

 // shared variables declaration

 procedure P1 (…) {

 …

 }

 procedure Pn (…) {

 …

 }

 init code (…) {

 ….

 }

}
8

Monitor

Slides by Felipe L. Perrone

9

Condition Variables

• condition x, y;

• Two operations are allowed on a condition variable:

• x.wait() – a process that invokes the operation is

suspended until x.signal()

• x.signal() – resumes one of processes (if any) that

invoked x.wait()

• If no x.wait() on the variable, then it has no effect on the

variable

10

 Monitor with Condition Variables

11

Condition Variables Choices

• If process P invokes x.signal(), and process Q is suspended

in x.wait(), what should happen next?

• Both Q and P cannot execute in paralel. If Q is resumed, then P must

wait

• Options include

• Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition

• Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition

• Both have pros and cons – language implementer can decide

12

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

 P0 P1

 acquire(S); acquire(Q);

 acquire(Q); acquire(S);

 . .

 . .

 . .

 release(S); release(Q);

 release(Q); release(S);

• Starvation – indefinite blocking. A process may never be removed from
the semaphore queue in which it is suspended.

Slides by Felipe L. Perrone

13

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

14

The Dining-Philosophers Problem

thinking

hungry eating

States for a philosopher

Slides by Felipe L. Perrone

15

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

16

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

17

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

18

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

19

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

20

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

21

Limit to Concurrency

What is the maximum number of philosophers that can be eating

at any point in time?

Slides by Felipe L. Perrone

22

Philosopher’s Behavior

• Grab chopstick on left

• Grab chopstick on right

• Eat

• Put down chopstick on right

• Put down chopstick on left

How well does this work?

Slides by Felipe L. Perrone

23

 Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this algorithm?

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

25

How can we resolve

this deadlock?

26

The Dining-Philosophers Problem

Question: How many philosophers can eat at once? How can

we generalize this answer for n philosophers and n

chopsticks?

Question: What happens if the programmer initializes the

semaphores incorrectly? (Say, two semaphores start out a

zero instead of one.)

Question: How can we formulate a solution to the problem

so that there is no deadlock or starvation?

Slides by Felipe L. Perrone

27

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i);

 if (state[i] != EATING) self[i].wait;

}

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

}

28

Solution to Dining Philosophers (Cont.)

 void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

29

