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Condition Variables 

• Yet another synchronization tool 

• If we want to check a if a condition holds or not before 

continuing the execution (parent process checking if the child 

process is done) 

• condition variable is an explicit queue  

• Threads can put themselves on the queue when the condition does 

not hold (by invoking wait on the condition) 

• Some other thread, when it changes the condition, can then wake 

one (or more) of those waiting threads and thus allow them to 

continue (by invoking signal on the condition). 

• Difference from semaphores? 

• Does not keep a count but only put processes into sleep or wake 

them based on the state of the condition 
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Semaphores 

• Synchronization tool that provides more sophisticated ways (than 
Mutex locks)  for process to synchronize their activities. 

• Semaphore S – integer variable 

• Can only be accessed via two indivisible (atomic) operations 

• wait() and signal() 

• Originally called P() and V() 
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Can we avoid busy waiting?!? 
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No Busy Waiting! 

• With each semaphore there is an associated waiting queue 

• Each entry in a waiting queue has two data items: 

•  value (of type integer) 

•  pointer to next record in the list 

 

• Two operations: 

• block – place the process invoking the operation on the 

appropriate waiting queue 

• wakeup – remove one of processes in the waiting queue and place 

it in the ready queue 
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Monitor 
• Semaphores are low-level synchronization resources. 

• A programmer’s honest mistake can compromise the entire system (well, that is 

almost always true). We should want a solution that reduces risk. 

• The solution can take the shape of high-level language constructs, as the monitor 

type: 

A procedure can access only local 

variables defined within the monitor. 

 

There cannot be concurrent access to 

procedures within the monitor (only one 

process/thread can be active in the monitor 

at any given time).  

 

Condition variables: queues are associated 

with variables. Primitives for 

synchronization are wait and signal. 

monitor mName { 

  // shared variables declaration 

  procedure P1 (…) { 

     … 

  } 

  procedure Pn (…) { 

     … 

  } 

  init code (…) { 

    …. 

  } 

} 
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Monitor 
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Condition Variables 

• condition x, y; 

• Two operations are allowed on a condition variable: 

• x.wait() –  a process that invokes the operation is 

suspended until x.signal()  

• x.signal() – resumes one of processes (if any) that  

invoked x.wait() 

• If no x.wait() on the variable, then it has no effect on the 

variable 
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 Monitor with Condition Variables 
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Condition Variables Choices 

• If process P invokes x.signal(), and process Q is suspended 

in x.wait(), what should happen next? 

• Both Q and P cannot execute in paralel. If Q is resumed, then P must 

wait 

• Options include 

• Signal and wait – P waits until Q either leaves the monitor or it 

waits for another condition 

• Signal and continue – Q waits until P either leaves the monitor or it  

waits for another condition 

• Both have pros and cons – language implementer can decide 
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Deadlock and Starvation 
• Deadlock – two or more processes are waiting indefinitely for an event that 

can be caused by only one of the waiting processes. 

 

• Let S and Q be two semaphores initialized to 1 

  P0  P1 

               acquire(S);   acquire(Q); 

                acquire(Q);   acquire(S); 

  .   . 

  .   . 

  .   . 

                release(S);   release(Q); 

                release(Q);   release(S); 

 

• Starvation  – indefinite blocking.  A process may never be removed from 
the semaphore queue in which it is suspended. 
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The Dining-Philosophers Problem 
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The Dining-Philosophers Problem 

thinking 

hungry eating 

States for a philosopher 
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Limit to Concurrency 

What is the maximum number of philosophers that can be eating 

at any point in time?  
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Philosopher’s Behavior 

• Grab chopstick on left 

• Grab chopstick on right 

• Eat 

• Put down chopstick on right 

• Put down chopstick on left 

How well does this work? 
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  Dining-Philosophers Problem Algorithm 

• The structure of Philosopher i: 
do {  

    wait (chopstick[i] ); 

   wait (chopStick[ (i + 1) % 5] ); 

  

              //  eat 

 

   signal (chopstick[i] ); 

   signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think 

 

} while (TRUE); 

•   What is the problem with this algorithm? 
 



The Dining-Philosophers Problem 
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How can we resolve 

this deadlock? 
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The Dining-Philosophers Problem 

Question: How many philosophers can eat at once? How can 

we generalize this answer for n philosophers and n 

chopsticks? 

Question: What happens if the programmer initializes the 

semaphores incorrectly? (Say, two semaphores start out a 

zero instead of one.) 

Question: How can we formulate a solution to the problem 

so that there is no deadlock or starvation? 
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Monitor Solution to Dining Philosophers 

monitor DiningPhilosophers 

{  

 enum { THINKING; HUNGRY, EATING) state [5] ; 

 condition self [5]; 

 

 void pickup (int i) {  

        state[i] = HUNGRY; 

        test(i); 

        if (state[i] != EATING) self[i].wait; 

} 

  

   void putdown (int i) {  

        state[i] = THINKING; 

                   // test left and right neighbors 

         test((i + 4) % 5); 

         test((i + 1) % 5); 

} 
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Solution to Dining Philosophers (Cont.) 
 

 void test (int i) {  

         if ((state[(i + 4) % 5] != EATING) && 

         (state[i] == HUNGRY) && 

         (state[(i + 1) % 5] != EATING) ) {  

              state[i] = EATING ; 

      self[i].signal () ; 

         } 

   } 

 

       initialization_code() {  

        for (int i = 0; i < 5; i++) 

        state[i] = THINKING; 

      } 

} 
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