
Operating System Design

Neda Nasiriani

Fall 2018
1

Exam Review

Exam 1 is next week!

• Office hours:

• Today 3-5

• Tomorrow 4:30-6:30

2

Review

• What is a system call?

• Provides an interface to the services made available by an operating
system

• Systems execute thousands of system calls per second

• Every file access

• Every input/output device

• What is an API?

• Application programming interface that specifies a set of functions
available to the programmers.

• What is the Unix system’s API?

• POSIX which is accessible through C language as libc library

• System call interface?

• Each programming language provides a system call interface that
serves as the link to system calls made available by the operating
system

3

Protecting the Processes and the OS

• What if any user is able to execute any system call?

• Stop another process…

• Allocate CPU to its own process for as long as it wants

• Take control of all the devices

• ….

• What should we do to protect the processes from damaging

each other and the OS?

• We need a layer of protection, but how?

• Remember that the CPU just pull the instructions and execute

them.

• How can we label instructions which are privileged form the ones

that are regular ones? 4

Privileged Mode

• There are two modes defined for each instructions which is

specified by a mode bit: kernel or privileged mode (0) and user

mode (1)

• Note that this is embedded in the hardware, hence can not be

tampered with by a user process.

5

6

How does this mode change happen?

• Trap is a mechanism that notifies the OS kernel about the
intentions of a user process to runs a privileged instructions.

• Trap is a software signal sent to the OS

1. One application of traps is exception handling when
running a user program. E.g., (i) division by zero, (ii)
accessing memory that is not allocated to the process

• some error handling is required by the kernel. Hence trap is the
name of the signal that is sent to the OS to ask to handle the
situation and send back the appropriate error, or take necessary
actions

2. The other application of traps it executing system calls
• When a user process calls a system call, a trap is initiated that

returns the control to the OS to execute the system call in the
kernel mode. When the execution is complete, the control is
transferred back to the user mode.

7

Two Mechanisms for

Performing I/O

operations?

8

Option 1: Polling

https://www.youtube.com/watch?v=18AzodTPG5U The Simpsons:

ask device if data is ready end I/O

wait some time

initiate I/O

data is ready

data is not ready

 If this time is short (the device

is very fast) this could work?!?

 What if some unexpected I/O

operation happens and no

polling was initiated for it?!?

 Almost 3 CPU cycles to poll a device

 Inefficient in case of repeated attempts

9

Based on slides from Luiz F. Perrone

Option 2: Interrupt

initiate I/O

go do something

productive data is ready

receive data

go back to something

productive
I/O terminated

10

Based on slides from Luiz F. Perrone

Interrupts

• CPU Interrupt-request line triggered by I/O device

• Checked by processor after each instruction

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct handler

• Context switch at start and end

• Based on priority

• Some nonmaskable

• Interrupt chaining if more than one device at same interrupt

number

• Remember: Traps are software interrupts
11

Interrupt Driven I/O Cycle

What if a huge chunk of data

to be read from Disk?

Wasting CPU resources

Can we offload some of this

from CPU?

12

Direct Memory Access?

13

Direct Memory Access (DMA)

• What if we have a simpler controller that knows

• the data location to be read from the disk

• the memory location that it should be copied too

• can access the memory

• And can take care of this…

14

Direct Memory Access (DMA)

• Bypasses CPU to transfer data directly between
I/O device and memory

• OS writes DMA command block into memory
• Source and destination addresses

• Read or write mode

• Count of bytes

• The CPU writes location of command block to DMA controller

• Handshaking between DMA controller and Device controller

• DMA-request and DMA-acknowledge (for each byte of data
transfer)

• Bus mastering of DMA controller – grabs bus from CPU

• Cycle stealing from CPU but still much more efficient

• When done, DMA controller interrupts to signal completion
15

DMA: How it works

16

Booting the OS!

17

Booting Steps Review

1) Where is BIOS stored when your machine powers up?

1) The BIOS is stored on Flash disk which is mapped to BIOS

address in memory

2) What is in the RAM (main memory) when your machine

powers up?

1) Garbage!

3) What are example boot devices and who chooses the boot

device for the BIOS?

1) CD-ROM, Hard drive, …

2) The user chooses it

4) What is a Master Boot Record (MBR) and what does it

contain?

1) First 512 Bytes of the boot device and contains the bootstrapper

program and partition table

18

OS types

• Batch systems

• Multiprogrammed systems

• Time sharing systems (interactive systems)

• Multi processor systems

• Distributed systems

• Real-time systems

19

Processes

20

Processes Components

• What are the main components of a process?

• Text section

• The code

• Stack

• Local variables

• Function parameters

• …

• Heap

• Dynamically allocated memory

• Data Section

• Global variables

• What else?

21

Processes Components

• Assume processes A is running in a system

• The CPU decides to switch from process A to another process

• What information will the CPU need to resume process A later?

• Program Counter

• Value of registers

• SO, a process is associated with the following components

• Text section

• Data section

• Heap

• Stack

• Program Counter

• Value of Registers

22

lw $t0, offset($s0)

lw $t1, offset($s1)

add $d, $t0, $t1

.

.

.

Process A

Scheduler

• Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

• Sometimes the only scheduler in a system

• Short-term scheduler is invoked frequently (milliseconds) (must be

fast)

• Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

• Long-term scheduler is invoked infrequently (seconds, minutes) (may

be slow)

• The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

• CPU-bound process – spends more time doing computations; few very

long CPU bursts

• Long-term scheduler strives for good process mix

23

Medium-Term Scheduler

• Medium-term scheduler can be added if degree of

multiple programming needs to decrease

• Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

24

Process Creation: How?

• An existing process can create a new process by calling the

fork() system call

• fork() runs once in the parent process but returns two times,

1) In the child process, with returning value of 0

2) In the parent process, with the value of the child process id

• Both the child and the parent process start executing with the

instruction that follows the fork() system call

• The child process gets a copy of the parent’s data space, heap

and stack (It is a separate copy from the parent’s)

25

Process Creation using fork():

sharing resources
• The child process gets its own copy of the data section, stack

and heap of the parent process

• The child process get a duplicate of all open file descriptors in
its parent process

• The parent and the child share a file table entry for every open
descriptor

• The parent and the child share the same file offset

• If a child process is writing to standard output when the parent process
is executing it can append to the end of standard output

• Note that every UNIX program has three streams opened for it
when it starts up, one for input (stdin), one for output (stdout), and
one for error messages (stderr) with file descriptors of 0, 1 and 2
respectively.

• Does changes in the child variables change the parent variables?

• No

26

Process Creation: example

27

Process Termination

• Process executes last statement and then asks the operating

system to delete it using the exit() system call.

• Returns status data from child to parent (via wait(&status))

• Process’ resources are deallocated by operating system

• The parent process may wait for termination of a child process

by using the wait()system call. The call returns status

information and the pid of the terminated process

 pid = wait(&status);

• If parent has not called wait()yet but the child is terminated,

the info of child is still kept in the process table. This child

process is a zombie

• If parent terminated without invoking wait , process is an

orphan, which is adopted by init process

28

Process Creation Diagram

• The parent can wait on the child process by system calls

• pid_t wait (int * status);

• pid_t waitpid (pid_t pid, int * status, int options);

• Both these return process id on successful return or -1 in case of

an error

• Otherwise the parent process might terminate before the child

process terminates!!!

29

Interprocess Communication

30

• Example: Chrome browser

• Cooperating processes need interprocess communication

(IPC)

• Two models of IPC

• Shared memory

• Message passing

Communication Models

31

(a) Message passing. (b) shared memory.

Message Passing

• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of

communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or

variable?

• Is a link unidirectional or bi-directional?
32

Message Passing

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

33

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer

style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes

34

Read End Write End

Pipes: creation and setup

35

 The data in the pipe flows through the kernel.

 Normally, the process that calls pipe then calls fork, creating an IPC channel from

the parent to the child, or vice versa.

Pipes: creation and setup

36

Named Pipes

• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the

communicating processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems

• Example: FIFO

37

Concurrent vs. Parallel computing

• Concurrent execution on single-core system:

• Supports more than one task by allowing all the tasks to
make progress

• Parallelism on a multi-core system:

• Perform more than one task simultaneously

38

Multicore or Multiprocessor

• Increasing number of processing cores on computer systems

• Parallelism can be achieved

• Decrease the execution time

• What is the potential performance gain from adding another

computing core? (AMDAHL’S LAW)

• S is serial portion

• N processing cores

• If S=40% and N grows very large what is maximum speed up?

• 2.5 times

39

When multi-process architecture

makes sense?
• Web Server Example

• If you are designing a web server, you need to constantly listen to

possible incoming requests

• Also there could be 1000 of requests every second, how can you

address them all in a timely fashion?

• Word Editor Example

• Allow user to work on a very large file while providing spell

checking in the background (without pausing the editing)

• Apply the keystrokes to the document

• Automatically saving it without pausing the user work

40

Multi-threaded Execution

• Let’s think about the word editor example again

• What if the spell checker thread corrects a word spelling and at the

same time the user is changing that word in the editor thread?

• What can go wrong here?

• Inconsistency in the data section

41 Editor

Spell-check

Multi-threaded Execution

• Let’s think about the word editor example again

• What if the spell checker thread corrects a word spelling and at the

same time the user is changing that word in the editor thread?

• What can go wrong here?

42 editor

Spell-check

Can we mitigate this inconsistency?

YES, We can avoid this using

synchronization techniques that we

will see in chapter 5.

Web Server Example

• Assume the web server is servicing search request (google

search engine)

• Each request to be served is of similar nature (repetitive code)

and has to work on the same information (repetitive data)

• What if we could have multiple executions of the same search

code within the same process?

• Let’s see how it looks!

43

Multithreaded Server

Architecture

client server

request (1)

44

Based on slides from Luiz F. Perrone

Data Code Files

Multithreaded Server

Architecture

client server

request (1)

create new thread

to service request

45

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

resume

listening for

new requests

46

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

request (2)

47

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

Multithreaded Server

Architecture

client server

request (2)

create new thread to

service request

48

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

th
re

a
d
(2

)

registers

stack

Multithreaded Server

Architecture

client server

resume

listening for

new requests

49

Based on slides from Luiz F. Perrone

th
re

a
d
(1

)

Data Code Files

registers

stack

th
re

a
d
(2

)

registers

stack

Threads vs. Processes

• What are the advantages of Threads over Processes

• Light weight

• Processes are costly to create (around 30X time more time)

• Context switching processes can take up to 5X more time

• More Efficient

• Sharing data is easier

• PCBs are large data types while TCB are way smaller

• What are the disadvantages and challenges of Threads

• We need consistency when accessing the shared data

• We should implement synchronization method among threads

accessing the shared data

• Can complicates execution

50

PCB vs TCB

51

https://computing.llnl.gov/tutorials/pthreads/#Overview

TCB

PCB

Why Threads?

• No Inter Process Communication (IPC) is necessary

• The only limit is the memory bandwidth which is way more

than the shared memory bandwidth as an IPC among processes

52

https://computing.llnl.gov/tutorials/pthreads/#Overview

How are Threads Scheduled?
• Assume process P creates 5 threads T_1, T_2, T_3, T_4, T_5 in this

order T_2, T_1, T_3, T_5, T_4

• Which one of these threads executes first?

• Which one of these threads finish its execution first?

• On which core is thread T_3 scheduled to run? (if there are 4 cores)

• The answer to all these questions is WE DON’T KNOW

• A good multi-threaded program successful execution should be
independent of order of execution of its threads

• What can we control?

• The pthreads API provides several routines that may be used to specify
how threads are scheduled for execution

• FIFO (first-in first-out)

• RR (round-robin)

• OTHER (operating system determines)

• pthreads API also provides the ability to set a thread's scheduling
priority value.

• The Linux operating system may provide a way to set the CPU core to
execute the process on using the sched_setaffinity routine.

53

https://computing.llnl.gov/tutorials/pthreads/man/sched_setaffinity.txt

Threads Synchronization

• If main() finishes before the created threads exit, all of the

threads will be terminated because the main thread of

execution is terminated

• How can we avoid this?

• If main thread calls pthread_exit() as the last thing it does, main()

will block and be kept alive to support the threads it created until

they are done.

• Using pthead_join(.) can block the thread to wait for the spawned

threads

54

User Threads and Kernel Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems,
including:

• Windows

• Solaris

• Linux

• Tru64 UNIX

• Mac OS X

55

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

56

Many to One

• Many user-level threads mapped

to single kernel thread

• One thread blocking causes all

to block

• Multiple threads may not run in

parallel on multicore system

because only one may be in

kernel at a time

• Few systems currently use this

model

• Examples:

• Solaris Green Threads

• GNU Portable Threads

57

One to One

• Each user-level thread maps to a kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted due to

overhead

• Examples

• Windows

• Linux

• Solaris 9 and later

58

Many-to-Many

• Allows many user level

threads to be mapped to many

kernel threads

• Allows the operating system

to create a sufficient number of

kernel threads (thread pool)

• Solaris prior to version 9

• Windows with the

ThreadFiber package

59

Two-level Model

• Similar to M:M, except that it

allows a user thread to be

bound to kernel thread

• Examples

• Tru64 UNIX

• Solaris 8 and earlier

60

Create Threads

• (*start_routine) is a functin pointer to a function that returns a

void * and has one argument of type void *

• pthread_t is a unsigned long (%lu)
61

NAME

 pthread_create - create a new thread

SYNOPSIS

 #include <pthread.h>

 int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

 Compile and link with –pthread

Based on slides from Luiz F. Perrone

Thread Termination

• If any thread within a process calls exit, then the entire process terminates

• A thread can exit in three ways

1. Return from the start routine. The return value is the thread’s exit code

2. The thread can be canceled by another thread in the same process

3. The thread can call pthread_exit

 To allow other threads to continue execution, the main thread should

terminate by calling pthread_exit() rather than exit().

62

NAME

 pthread_exit – terminate calling thread

 void pthread_exit (void *retval);

Based on slides from Luiz F. Perrone

Thread Join and Return Value

• If a thread has return values from its start routine, it can send it to

other threads in the process by calling pthread_exit (void* retval) or

simply returning a pointer of type void * to the return value

• retval is a type-less pointer like the input argument for pthread_create

• How can other threads access this value?

• If a thread needs an input argument from another thread it can use join

function to block its execution until the other thread exits

63

NAME

 pthread_join – calling thread will block until the specific thread calls pthread_exit

 pthread_join (pthread_t tid, void **retval_ptr);

 etval_ptr has the return value of the thread with ID tid

Thread Input Argument and Return

Value (Output Argument)
• The typeless pointer passed to pthread_create and pthread_exit can

be used to pass the address of a structure containing more complex

information.

• Be careful that the memory used for the structure is still valid when

the caller has completed.

• If the input structure was allocated on the caller’s stack, for example,

the memory contents might have changed by the time the structure is

used.

• If a thread allocates an output structure on its stack and passes a

pointer to this structure to pthread_exit, then the stack might be

destroyed and its memory reused for something else by the time the

caller of pthread_join tries to use it.
64

Process

Synchronization!

65

Critical Section Problem

• General Structure of a Process 𝑃𝑖

66

Producer-Consumer Inconsistency

67

register1 = counter

register1 = register1+1

counter = register1

register2 = counter

register2 = register2-1

counter = register2

Process i

in = 4

counter = 4

Process j

 out = 0

counter = 4

0

1

2

3 4

5

6

7

out

in

4 register1

4 register2

5

3

4 counter ?

Producer-Consumer Inconsistency

68

register1 = counter

register1 = register1+1

counter = register1

register2 = counter

register2 = register2-1

counter = register2

Process i

in = 4

counter = 4

Process j

 out = 0

counter = 4

0

1

2

3 4

5

6

7

out

in

4 register1

4 register2

5

3

RACE CONDITION!

How can we avoid this?

Solution (1): No interrupts

69 register2 = counter

register2 = register2-1

counter = register2

Process i

in = 4

counter = 4

Process j

 out = 0

counter = 4

0

1

2

3 4

5

6

7

out

in

register1 = counter

register1 = register1+1

counter = register1

No interrupts

Solution (2): Atomic Operations

70

register1 = counter

register1 = register1+1

counter = register1

register2 = counter

register2 = register2-1

counter = register2

Process i

in = 4

counter = 4

Process j

 out = 0

counter = 4

0

1

2

3 4

5

6

7

out

in

Locks (Hardware)

Valid Solution Properties

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section

and there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its critical

section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n processes

71

Peterson’s Solution

• flag is used to indicate if a process is ready to enter its CS

• turn specifies whose turn it is to enter its CS

72

Process i Process j

 turn i or j Mutual Exclusion: Pass

Peterson’s Solution

• flag is used to indicate if a process is ready to enter its CS

• turn specifies whose turn it is to enter its CS

73

Process i Process j

Progress: Pass

Bounded Waiting: Pass

Synchronization Hardware

• Many systems provide hardware support for implementing the
critical section code.

• All solutions below based on idea of locking

• Protecting critical regions via locks

• Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptible

• Either test memory word and set value

• Or swap contents of two memory words

74

Get Help from Hardware for Locks

• What was the problem here?!?

75

do {

 while (lock);

 lock = 1;

 critical section

 lock = 0;

 remainder section

 } while (true);

How to have a working lock?

• Can this be fixed if we were able to test and set the value of

lock in one atomic (uninterruptible) operation?

76

do {

 while (lock);

 lock = 1;

 critical section

 lock = 0;

 remainder section

 } while (true);

No interrupts

Test and Set Instruction

• There is hardware support for such instructions

• The whole instruction will be executed as one uninterruptible
unit of operation

• One example of such instructions: Test_and_Set

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

77

Atomically

Lock using Test and Set

• lock initialized to false

• Let’s use the test and set operation for implementing our lock!

78
Mutual Exclusion: Pass Bounded Waiting: ?!?

Compare and Swap Instruction

1.Executed atomically

2.Returns the original value of passed parameter “value”

3.Set the variable “value” the value of the passed parameter
“new_value” but only if “value” ==“expected”. That is, the
swap takes place only under this condition.

 79

Lock using Compare and Swap

• lock initialized to 0

80
Mutual Exclusion: Pass Bounded Waiting: ?!?

Mutex (Mutual Exclusion) Locks

• Solutions seen so far are complicated!

• So Operating Systems designers build software tools to solve

CS problem

• A process should acquire the lock in the entry section then is

allowed to enter its CS

• After the process is done, it should release its lock in the exit

section

81

Mutex Lock

• The function acquire is a blocking operation

• Called also spinlock

82

Atomically

Counting Locks

• What if

• we have more than one copy of the resource?

• Or want to allow up to n processes into the critical section?

• We need a counting lock…

83

Semaphores

• Synchronization tool that provides more sophisticated ways (than
Mutex locks) for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

• Originally called P() and V()

84
Atomically

Semaphores Continued

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

 85

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

86

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

87

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

88

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

89

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

90

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

91

Limit to Concurrency

What is the maximum number of philosophers that can be eating

at any point in time?

Slides by Felipe L. Perrone

92

Philosopher’s Behavior

• Grab chopstick on left

• Grab chopstick on right

• Eat

• Put down chopstick on right

• Put down chopstick on left

How well does this work?

Slides by Felipe L. Perrone

93

 Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this algorithm?

The Dining-Philosophers Problem

Slides by Felipe L. Perrone

95

Network

Communications!

96

Sockets

• How can two processes on two different machines talk to each other

on the web?

• A socket is defined as an endpoint for communication

• Concatenation of IP address and port – a number included at start of

message packet to differentiate network services on a host

• The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

• Communication consists between a pair of sockets

• All ports below 1024 are well known, used for standard services

• Special IP address 127.0.0.1 (loopback) to refer to system on which

process is running

Socket Communication

Connection Types

• Two types of connection

(transport layer)

• Connection-oriented (TCP)

• Connectionless (UDP)

TCP Connections

• Service

• OSI Transport Layer

• Reliable byte stream (interpreted by application)

• 16‐bit port space allows multiple connections on a single host

• Connection‐oriented

 – Set up connection before communicating

 – Tear down connection when done

100

www.cs.uluc.edu/class/fa07/cs438

TCP Service

• Reliable Data Transfer

• Guarantees delivery of all data

• Exactly once if no catastrophic failures

• Sequenced Data Transfer

• Guarantees in‐order delivery of data

• If A sends M1 followed by M2 to B, B never receives M2 before
M1

• Regulated Data Flow

• Monitors network and adjusts transmission appropriately

• Prevents senders from wasting bandwidth

• Reduces global congestion problems

• Data Transmission

• Full‐Duplex byte stream 101

www.cs.uluc.edu/class/fa07/cs438

Sample TCP communication

• Transport Control Protocol (TCP)

102

www.cs.uluc.edu/class/fa07/cs438

TCP connection from OSI P.O.V.

103

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

• Connection oriented (streams)

• sd = socket(PF_INET, SOCK_STREAM, 0);

104

Default Protocol

TCP Connection Establishment

• For the internet (PF_INET) this corresponds to TCP

• socket() returns a socket descriptor, an int similar to a file

descriptor

• For a server, we need to associate a well-known address with

the server’s socket on which client requests will arrive

• Clients need a way to discover the address to use to contact a

server

• server reserves an address and register it in /etc/services

• Register with a name service

105

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

• Use connect() on a socket that was previously created using

socket():

• If we’re dealing with a connection-oriented network service,

we need to create a connection between the socket of the

process requesting the service (the client) and the process

providing the service (the server)

• The address we specify with connect is the address of the

server with which we wish to communicate. If sockfd is not

bound to an address, connect will bind a default address for the

caller.

106

www.cs.uluc.edu/class/fa07/cs438

TCP Connection Establishment

107

www.cs.uluc.edu/class/fa07/cs438

TCP: Client

• socket() create the socket descriptor

• connect() connect to the remote server.

• read(),write() communicate with the server

• close() end communication by closing socket descriptor

108

TCP: Server

• socket() create the socket descriptor

• bind() associate the local address

• listen() wait for incoming connections from clients

• accept() accept incoming connection

• read(),write() communicate with client

• close() close the socket descriptor

109

Listen

110

• A server announces that it is willing to accept connect requests by calling

the listen function

• The backlog argument provides a hint to the system regarding the number

of outstanding connect requests that it should enqueue on behalf of the

process

Accept Connections

• Once a server has called listen, the socket used can receive

connect requests. We use the accept function to retrieve a

connect request and convert it into a connection

• The file descriptor returned by accept is a socket descriptor

that is connected to the client that called connect

• The original socket passed to accept is not associated with the

connection, but instead remains available to receive additional

connect requests

111

Scheduling Algorithms

112

 Process Burst Time

 P1 24

 P2 3

 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

First-Come, First-Served (FCFS)

P1 P2 P3

24 27 30 0

113

FCFS

Suppose that the processes arrive in the order

 P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case.

• Convoy effect: all process are stuck waiting until a long process terminates.

P1 P3 P2

6 3 30 0

114

Shortest-Job-First (SJF)

• Associate with each process the length of its next CPU burst.

Use these lengths to schedule the process with the shortest

time.

• Two schemes:

• Nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.

• Preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preempt. This scheme is

know as the Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time for a

given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?
115

 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SJF

P1 P3 P2

7 3 16 0

P4

8 12

116

Preemptive SJF:

Shortest Remaining Time First

 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

117

Determining Length of the Next

CPU-Burst

• We can only estimate the length.

• This can be done by using the length of previous CPU

bursts, using exponential averaging:

118

Prediction of the Length of the Next

CPU-Burst

119

Priority Scheduling

• A priority number (integer) is associated with each process.

• The CPU is allocated to the process with the highest priority (smallest

integer ≡ highest priority)

• Preemptive

• Nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU-burst

time.

• Problem: Starvation – low priority processes may never execute.

• Solution: Aging – as time progresses increase the priority of the process.

120

