
File Systems: Interface
and Implementation

CSCI 315 Operating Systems Design
Department of Computer Science

By Felipe Perrone
Notice: The slides for this lecture have been largely based on those from an earlier
edition of the course text Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,
and Gagne. Many, if not all, the illustrations contained in this presentation come from
this source.

Overview of Mass Storage Structure

• Magnetic disks provide bulk of secondary storage of modern

computers

– Drives rotate at 60 to 250 times per second

– Transfer rate is rate at which data flow between drive and computer

– Positioning time (random-access time) is time to move disk arm to

desired cylinder (seek time) and time for desired sector to rotate under

the disk head (rotational latency)

– Head crash results from disk head making contact with the disk

surface -- That’s bad

• Disks can be removable

• Drive attached to computer via I/O bus
– Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel,

SCSI, SAS, Firewire
– Host controller in computer uses bus to talk to disk controller built

into drive or storage array

Magnetic Disk

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

Solid-State Disks
• Nonvolatile memory used like a hard drive

– Many technology variations

• Can be more reliable than HDDs
• More expensive per MB
• Maybe have shorter life span
• Less capacity
• But much faster
• Busses can be too slow -> connect directly to PCI for

example
• No moving parts, so no seek time or rotational latency

Magnetic Tape
• Was early secondary-storage medium

– Evolved from open spools to cartridges

• Relatively permanent and holds large quantities of data
• Access time slow
• Random access ~1000 times slower than disk
• Mainly used for backup, storage of infrequently-used data,

transfer medium between systems
• Kept in spool and wound or rewound past read-write head
• Once data under head, transfer rates comparable to disk

– 140MB/sec and greater

• 200GB to 1.5TB typical storage
• Common technologies are LTO-{3,4,5} and T10000

File System Topics

• File Concept
• Access Methods
• Directory Structure
• File System Mounting
• File Sharing
• Protection

File Concept

• A file is a named collection of related information
recorded on secondary storage.

• “Contiguous” logical address space.

• File types:
– Data:

• numeric.

• character.

• binary.

– Program (executable).

File Structure
• None: just a sequence of words or bytes.
• Simple record structure:

– Lines,
– Fixed length,
– Variable length.

• Complex Structures:
– Formatted document,

• Can simulate last two with first method by inserting
appropriate control characters.

• Who decides:
– Operating system,
– Program.

File Attributes
• Name – only information kept in human-readable form.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing, executing.

• Time, date, and user identification – data for protection,
security, and usage monitoring.

Information about files is kept in the directory structure,
which resides on the disk.

File Operations
• Create.

• Write.

• Read.

• Random access.

• Delete.

• Append.

• Truncate (reset size to 0, keep current attributes).

• Open(Fi) – search the directory structure on disk for entry Fi,
and move the content of entry to memory.

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk.

Open Files

Several pieces of data are needed to manage open files:

•Open-file table: tracks open files

•File pointer: pointer to last read/write location, per process
that has the file open

•File-open count: counter of number of times a file is open –
to allow removal of data from open-file table when last
processes closes it

•Disk location of the file: cache of data access information•Access rights: per-process access mode information

Open File Locking

Provided by some operating systems and file systems
•Similar to reader-writer locks
•Shared lock similar to reader lock – several processes can acquire

concurrently
•Exclusive lock similar to writer lock

Mediates access to a file

Mandatory or advisory:
•Mandatory – access is denied depending on locks held and

requested
•Advisory – processes can find status of locks and decide what to do

File Types: Name and Extension

Access Methods
• Sequential Access read next

write next
reset
no read after last write

(rewrite)

• Direct Access read n
write n
position to n

read next
write next

rewrite n

n = relative block number

Sequential-access File

Simulation of Sequential Access
on a Direct-access File

Other Access Methods

• Can be built on top of base methods
• General involve creation of an index for the file
• Keep index in memory for fast determination of location of

data to be operated on (consider UPC code plus record of
data about that item)

• If too large, index (in memory) of the index (on disk)
• IBM indexed sequential-access method (ISAM)

• Small master index, points to disk blocks of secondary
index

• File kept sorted on a defined key
• All done by the OS

• VMS operating system provides index and relative files as
another example (see next slide)

Example of Index
and Relative Files

Directory Structure
Directory: a symbol table that translates file names into

directory entries.

ping

emacs

ifconfig

mount

fdisk

find

…

…

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on tapes.

Disk Structure

• Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against failure
• Disk or partition can be used raw – without a file system, or

formatted with a file system
• Partitions also known as minidisks, slices
• Entity containing file system known as a volume
• Each volume containing file system also tracks that file

system’s info in device directory or volume table of
contents

• As well as general-purpose file systems there are many
special-purpose file systems, frequently all within the same
operating system or computer

Partitions and Directories
(File system organization)

File System Mounting
• A file system (partition) must be mounted before it can be accessed.

Mounting allows one to attach the file system on one device to the file
system on another device.

• A unmounted file system needs to be attached to a mount point before it
can be accessed.

existing unmounted

Operations on Directories

• Search for a file.
• Create a file.
• Delete a file.
• List a directory.
• Rename a file.
• Traverse the file system.

Goals of Directory Logical
Organization

• Efficiency – locating a file quickly.

• Naming – convenient to users.
– Two users can have same name for different files.

– The same file can have several different names.

• Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

General Graph Directory

Single-Level Directory

A single directory for all users.

Drawbacks:
Naming problem
Grouping problem

Two-Level Directory
A separate directory for each user.

• Path name.
• Can have the same file name for different user.
• Efficient searching.
• No grouping capability.

Tree-Structured Directories

Tree-Structured Directories
(Cont.)

• Efficient searching.

• Grouping Capability.

• Current directory (working directory):
– cd /spell/mail/prog,
– type list.

Tree-Structured Directories
(Cont.)

• Absolute or relative path name.
• Creating a new file is done in current directory by default.
• Delete a file

rm <file-name>
• Creating a new subdirectory is done in current directory.

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

rm -rf . ⇒ doesn’t mean “read mail really fast”

Acyclic-Graph Directories
Have shared subdirectories and files

links: soft (symbolic)

hard

Unix: ln (read man page);

need to keep a reference count on
each file or directory.

Acyclic-Graph Directories (Cont.)

• Different names (aliasing) for the same file or
directory.

• Must be careful with removals to avoid
dangling pointer.
Solutions:
– Backpointers, so we can delete all pointers.

Variable size records a problem.
– Backpointers using a daisy chain organization.
– Entry-hold-count solution.

General Graph Directory

General Graph Directory (Cont.)

• How do we guarantee no cycles?
– Allow only links to file not subdirectories.
– Garbage collection.
– Every time a new link is added use a cycle

detection algorithm to determine whether it is
OK.

File Sharing

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through a protection scheme.

• On distributed systems, files may be shared
across a network.

• Network File System (NFS) is a common
distributed file-sharing method.

Protection
• File owner/creator should be able to control:

– what can be done,
– by whom.

• Types of access:
– Read,
– Write,
– Execute,
– Append,
– Delete,
– List.

Discretionary Access Control (DAC)

Protection
• Mandatory Access Control (MAC):

– System policy: files tied to access levels = (public, restricted,
confidential, classified, top-secret).

– Process also has access level: can read from and write to all
files at same level, can only read from files below, can only write
to files above.

• Role-Based Access Control (RBAC):
– System policy: defines “roles” (generalization of the Unix idea

of groups).
– Roles are associated with access rules to sets of files and

devices.
– A process can change roles (in a pre-defined set of possibilities)

during execution.

Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users

RWX

a) owner access 7 ⇒ 1 1 1

RWX

b) group access 6 ⇒ 1 1 0

RWX

c) public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and add some

users to the group.

• For a particular file (say game) or subdirectory, define an appropriate

access.

owner group public

chmod 761 game

Associate a group with a file: chgrp G game

File-System Structure

• File structure:
– Logical storage unit,
– Collection of related information.

• File system resides on secondary storage
(disks).

• File system is organized into layers.
• File control block – storage structure

consisting of information about a file.

Layered File System

File Control Block

In-Memory File System Structures

file open

file read

Virtual File Systems
• Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

• VFS allows the same system call interface (the
API) to be used for different types of file
systems.

• The API is to the VFS interface, rather than any
specific type of file system.

Schematic View of Virtual File
System

ext3 FAT 32 NFS

same API for
all file system
types

Directory Implementation

• Linear list of file names with pointer to the data
blocks:
– simple to program, but…
– time-consuming to execute.

• Hash Table:
– decreases directory search time,
– collisions – situations where two file names hash to

the same location,
– fixed size.

The directory is a symbol table that maps file names to pointers that lead to
the blocks comprising a file.

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We’ll discuss
three options:

Contiguous allocation,
Linked allocation,
Indexed allocation.

Contiguous Allocation
• Each file occupies a set of contiguous blocks on

the disk.

• Simple: only starting location (block #) and length
(number of blocks) are required.

• Suitable for sequential and random access.

• Wasteful of space: dynamic storage-allocation
problem; external fragmentation.

• Files cannot grow unless more space than
necessary is allocated when file is created (clearly
this strategy can lead to internal fragmentation).

Contiguous Allocation of Disk Space
To deal with the dynamic
allocation problem
(external fragmentation),
the system should
periodically compact the
disk.

Compaction may take a
long time, during which the
system is effectively down.

To deal with possibly
growing files, one needs to
pre-allocate space larger
than required at the initial
time => this leads to
internal fragmentation.

Extent-Based Systems
• Many newer file systems (i.e. Veritas File System) use a

modified contiguous allocation scheme.

• Extent-based file systems allocate disk blocks in extents.

• An extent is a contiguous set of blocks. Extents are
allocated for each file. A file consists of one or more
extents.

• Extents can be added to an existing file that needs
space to grow. A block can be found given by the
location of the first block in the file and the block count,
plus a link to the first extent.

Linked Allocation
Each file is a linked list of
disk blocks.

Simple: need only starting
address.

Overhead: each block links to
the next.

Space cost to store pointer.

Time cost to read one block
to find the next.

Internal fragmentation, but
not external.
Sequential access comes
naturally, random does not.

File-Allocation Table (FAT)
Simple and efficient: One
entry for each block; indexed
by block number. The table is
implements the list linking the
blocks in a file.

Growing a file is easy: find a
free block and link it in.

Random access is easy.

If the FAT is not cached in
memory, a considerable
number of disk seeks
happens.

Used by MS-DOS and OS/2.

Indexed Allocation
Brings all pointers together
into an index block.

One index block per file.

Random access comes easy.

Dynamic access without
external fragmentation, but
have overhead of index block.

Wasted space: how large
should an index block be to
minimize the overhead?

• linked index blocks
• multilevel index
• combined scheme

Combined Scheme: UNIX
If file is small enough, use
only direct blocks pointers.

If number of blocks in file is
greater than the number of
direct block pointers, use
single, double, or triple
indirect.
Additional levels of indirection
increase the number of blocks
that can be associated with a
file.

Index blocks can be cached in
memory, like FAT. Access to
data blocks, however, may
require many disk seeks.

Free-Space Management
• Bit vector (1 bit per disk block)
• Linked list (free list)
• Grouping

– like linked list: first free block has n block addresses (the n-1
addresses are free blocks, the nth is the address of a block
with the next bundle of addresses)

• Counting
– like linked list, but each node points to a cluster of

contiguous, free blocks

The OS can cache in memory the free-space management structures for
increased performance. Depending on disk size, this may not be easy.

Bit Vector

Linked List

Grouping

Grouping

Counting

Counting

Recovery

• Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies.

• Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape).

• Recover lost file or disk by restoring data from
backup.

Log Structured File Systems

• Log structured (or journaling) file systems record each update to the file
system as a transaction.

• All transactions are written to a log. A transaction is considered
committed once it is written to the log. However, the file system may not
yet be updated.

• The transactions in the log are asynchronously written to the file system.
When the file system is modified, the transaction is removed from the log.

• If the file system crashes, all remaining transactions in the log must still be
performed.

