
Full Name: CSCI 315 Quiz 3 Sep 11, 2018

1

Participation: 5pts

Each question: 0.5 pts

1. The ____ multithreading model multiplexes many user-level threads to a smaller or equal

number of kernel threads.

A) many-to-one model

B) one-to-one model

C) many-to-many model

D) many-to-some model

2. A _____ uses an existing thread — rather than creating a new one — to complete a task.

A) lightweight process

B) thread pool

C) scheduler activation

D) asynchronous procedure call

3. According to Amdahl's Law, what is the speedup gain for an application that is 60% parallel

and we run it on a machine with 4 processing cores?

A) 1.82

B) .7

C) .55

D) 1.43

True/False
4. A traditional (or heavyweight) process has a single thread of control.

5. A thread is composed of a thread ID, program counter, register set, and heap.

6. Each thread has its own register set and stack.

7. The single benefit of a thread pool is to control the number of threads.

8. It is possible to create a thread library without any kernel-level support.

9. Virtually all contemporary operating systems support kernel threads.

10. It is possible to have concurrency without parallelism.

Full Name: CSCI 315 Quiz 3 Sep 11, 2018

2

Extra Point (2 pts)

In Figure 1, below you can see an implementation of the producer-consumer problem (that we talked

about in class) using two indexes in and out. There is an inefficiency problem with this implementation

(resource wastage) what was the inefficiency?

Figure 1: Producer-Consumer implementation with two shared variables in and out

In Figure 2 you can see an implementation of the producer and consumer problem using a counter

variable which avoids the inefficiency explained in Figure 1 implementation.

In a multithreaded process where one thread is producing items and one other thread is consuming items

what can go wrong in this implementation? (Hint: Think about data inconsistency)

Figure 2: New Producer-Consumer implementation with shared variable counter

