
Transport Protocols
CSCI 363 Computer Networks

Department of Computer Science

2

Expected Properties

 Guaranteed message delivery

 Message order preservation
 No duplication of messages

 Support for arbitrarily large messages
 Support for sender/receiver synchronization

 Receiver based flow control
 Support multiple application processes per host

3

Relationship with other layers

Transport

Network

Application

“Higher
layers”

What are the expectations of the functionality
provided by underlying layers?

Add to the functionality provided by Transport

Provides end-to-end features

May drop, reorder, or duplicate messages. May
introduce arbitrarily long delays. May limit
the size of messages to a maximum value.

4

Transport Algorithms

Simple asynchronous demultiplexing
service

Reliable byte-stream service

Request/reply service

5

Simple Asynchronous Demultiplexing:
UDP

UDP PDU format

6

Reliable Byte Stream: TCP

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

■ ■ ■

 Use the concept of ports to
demultiplex streams to the
same host.

 Guarantees reliable, in-
order delivery of a stream
of bytes without duplication.

 Implements flow-control
allowing the receiver to
throttle the volume of data
transmitted by the sender.

Question: What is the difference between flow-
control and congestion-control?

7

Segment Format

TCP is a byte-oriented protocol.

Question: What are the performance considerations
that drive the implementation of such a protocol?

8

TCP Connection Establishment
Active participant

(client) (server)
SYN, SequenceNum = x

ACK, Acknowledgment =y+1

Acknowledgment =x+1
SYN+ACK, SequenceNum=y,

Three-Way
Handshake

It takes 3 TCP segments to establish a connection.

9

TCP Connection Termination
(client) (server)

FIN, SequenceNum=M

ACK,Acknowledgement=M+1

FIN,SequenceNum=N

ACK, Acknowledgement=N+1

close (active
close) (passive close)

read returns 0

close

It takes 4 TCP segments to terminate a connection.

10

Socket Functions

socket()

connect()

write()

read()

close()

socket()

bind()

write()

read()

close()

read()

listen()

accept()

process request

block until connection from client

TCP 3-way handshake

data (request)

data (reply)

end-of-file notification

TCP Client
TCP Server

11

State Transition Diagram

Question: How do
your implement such
a complex protocol?

Question: How do
you verify that your
implementation
conforms to the
specifications?

Note: Arcs are labeled
with event/action.

12

Sliding Window
TCP’s sliding window algorithm:

1. Guarantees reliable delivery.
2. Guarantees in-order delivery.

3. Enforces flow control.
Look again at the TCP segment header:

The receiver tells the sender the
number of unacknowledged bytes of
data it will allow (based on buffer size).

13

 Flow Control

LastByteRcvd – LastByteRead<=MaxRcvBuffer

LastByteAcked<=LastByteSent

LastByteSent<=LastByteWritten
LastByteRead<NextByteExpected

NextByteExpected<=LastByteRcvd+1

AdvertisedWindow =MaxRcvBuffer –

 ((NextByteExpected-1)-LastByteRead)

LastByteSent-LastByteAcked<=AdvertisedWindow

EffectiveWindow=AdvertisedWindow-

 (LastByteSent-LastByteAcked)

LastByteWritten – LastByteAcked<=MaxSendBuffer

14

When The Window Hits Zero

If the AdvertisedWindow reaches zero, the sender is not
permitted to send any more data.

TCP always sends a segment in response to a received data
segment with the latest values for Acknowledge and
AdvertisedWindow. The receiver doesn’t, however, send a
spontaneous segment with this information.

Question: How does would the sender learn that
the AdvertisedWindow has become greater
than zero?

15

Triggering Transmission
Question: How should TCP decide to send a

segment?

Sending application

TCP

1. As soon as MSS (maximum segment size)
bytes have been collected from sender.

2. Whenever the sending application explicitly
requests it (push).

3. Whenever a “timer” fires and then
however many bytes have been buffered so
far are sent.

16

State Transition Diagram
Question: How do
your implement such
a complex protocol?

Question: How do
you verify that your
implementation
conforms to the
specifications?

Note: Arcs are labeled with
event/action.

17

Sliding Window
TCP’s sliding window algorithm:

1) Guarantees reliable delivery.
2) Guarantees in-order delivery.
3) Enforces flow control.

Look again at the TCP segment header:

The receiver tells the sender the number
of unacknowledged bytes of data it will
allow (based on buffer size).

18

When The Window Hits Zero

If the AdvertisedWindow reaches zero, the sender is not
permitted to send any more data.

TCP always sends a segment in response to a received data
segment with the latest values for Acknowledge and
AdvertisedWindow. The receiver doesn’t, however, send a
spontaneous segment with this information.

Question: How does would the sender learn that the
AdvertisedWindow has become greater than zero?

19

Maximum Segment Size (MSS)
Rule of thumb: Usually set to the size of the largest
segment TCP can send without causing the local IP to fragment.

MTU of the directly connected network

IP header TCP header

MSS= sizeof(MTU) -

 sizeof(IP header) –

 sizeof(TCP header)

20

“Aggressive Send”

Now, consider what happens in the presence of flow
control:
– AdvertisedWindow=0, so the sender is accumulating

bytes to send.
– ACK arrives and AdvertisedWindow=MSS/2.
– Question: Should the sender go ahead and send MSS/2

or wait for AdvertisedWindow to increase all the way to
MSS?

21

Silly Window Syndrome
Consequence of aggressively taking advantage of any
available window. Think of the TCP stream as a conveyor
belt:

Sender Receiver

full data containers

empty data containers (ACKs)

If the sender fills an empty container as soon as it arrives, the any small
container introduced into the system remains indefinitely: it is immediately
filled and emptied in each end.

22

Nagle’s Algorithm
Goal: Make the sender application “wait long enough” so that small

containers are coalesced into larger ones, but not so much that
interactive applications will suffer.

Algorithm
when (application has data to send) {
	
 if (available data>MSS) && (AdvertisedWindow>MSS)
	
 	
 send full segment
	
 else
	
 	
 if (unACKed data in transit)
	
 	
 buffer the new data until an ACK arrives
	
 	
 else
	
 	
 send all the new data immediately
}

PS: On by default on a TCP socket; option TCP_NODELAY turns it off.

CSCI 363 Computer Networks 23

Adaptive Retransmissions

Sender starts a timer, pushes the packet to receiver,
and waits for ACK. If timer expires, the sender
retransmits the packet. ACK arrives at Sender; if
timer running, then turn off timer.

Sender Receiver
5

5

5

Question: If the packets sent from the sender are
identical, to which one does the ACK correspond?

Question: What should the setting of the timer be?

CSCI 363 Computer Networks 24

Original Timeout Algorithm

Goal: To keep a running average of the RTT between
two host and use this value to set the timer.

Sender Receiver
5

5

5 t

t’

Question: What should be?

CSCI 363 Computer Networks 25

Karn/Partridge Algorithm
ACK doesn’t acknowledge a particular transmission.

ACK acknowledges the receipt of data.

Question: If you don’t know which transmission is
being ACKed, how do you compute SampleRTT?

CSCI 363 Computer Networks 26

Karn/Partridge Algorithm
Solution:
• Compute RTT only for the first transmission of a

packet.
• Each time TCP retransmits a packet, set the timeout

value to 2xTimeOut.

Rationale: If packets are being lost, this is likely to be
the consequence of congestion, so the sender should
be less aggressive.

CSCI 363 Computer Networks 27

Jacobson/Karels Algorithm
RTT variance in the original computation should be

considered: if it’s small then EstimatedRTT is a trusted
number and there is no need to use 2xTimeOut on
retransmissions.

CSCI 363 Computer Networks 28

Record Boundaries
Problem: If TCP provides the abstraction of a byte

stream, how can the receiver identify individual
records?

1. Use the UrgentPtr and URG flag to
mark the record boundary.

2. Use the PUSH flag: this means that
whatever bytes sent to the receiver
must be flushed out of the buffer.
(The receiving side must support
this option – note that the socket
API doesn’t.

3. The application can insert its own
markers in the data stream.

CSCI 363 Computer Networks 29

TCP Extensions
• Since the header has variable length, it can be used to

carry additional information.

• Not all hosts need to recognize the extensions, but
when both sender and receiver do, they should agree
to use them during the connection establishment.

CSCI 363 Computer Networks 30

Extension 1: Better RTT Estimate

Write a 32-bit timestamp on the outgoing segment.
The receiver echoes the timestamp back to the sender
in ACK segments.
The sender can read its clock when it receives the
ACK and computer a more accurate estimate of RTT.

CSCI 363 Computer Networks 31

Extension 2: SeqNo Wrap Around

Write a 32-bit timestamp on the outgoing segment.
Using the 32-bit SequenceNumber field together with
the timestamp increases the range to 64-bits.

Note that timestamp is monotonically increasing and so
it can be used to detect two different incarnations of
the same SequenceNumber.

CSCI 363 Computer Networks 32

Extension 3: Scale AdvertisedWindow

High-speed networks have larger delay x bandwidth
pipes. In order to keep them full, one may need more
the a 32-bit AdvertisedWindow.
A scaling factor can be used together with
AdvertisedWindow.
If the scaling factor is 2, then AdvertisedWindow
states how many unacknowledged 16-bits the sends
can push out.

33

Remote Procedure Call

34

RPC Concepts

Remote Procedure Call is a
mechanism for structuring distributed
systems. It is based on the semantics of
a local procedure call:

 The application program makes a
call intro a procedure without regard
for whether it is executed locally or
remotely and blocks until the call
returns.

Remember that the network between caller and callee (client and server) may not
be reliable (duplicated or lost messages) and that there may be significant
architectural differences between the two hosts (different data representation).

35

RPC Mechanism

The major components in RPC are:

1. A protocol between caller and callee
that makes up for the undesirable
properties of the network.

2. Programming language and compiler
support: the arguments of a call must
be put into a request message and then
translated to the callee’s conventions.
The returned data goes through a
similar process.

36

RPC Protocol Design
The RPC protocol must provide several different

functions, mainly:

Fragmenting and reassembling large messages,

Synchronizing request and reply messages, and

Dispatching request messages to the correct process.

37

A Simple RPC Protocol Stack

RPC is a generic term, not a specific standard like UDP, or
TCP. This gives us the opportunity to design our own RPC
protocol from scratch.

Our design will be based on three microprotocols:

• BLAST: fragmentation and reassembly,

• CHAN: synchronization of reply and request messages,
and

• SELECT: dispatching of request messages to the correct
process.

38

BLAST
The design principle behind BLAST is to send all

fragments to the receiver without waiting for each
one to be acknowledged individually. The receiver
uses a selective retransmission request (SRR) as
partial acknowledgements.

Format for BLAST
message header:

Spend a few minutes discussing
with your group how we can make
BLAST work. Also, think of what
you would need to store in its
message header.

39

CHAN
Microprotocol CHAN implements

synchronization in the request/reply
algorithm. It must also guarantee reliable
message delivery (no loss, no duplication).

The protocol preserves the semantics at-most-
once: for every request message, either zero
or one copy is delivered to the server.

When replies come almost immediately after
request, implicit acknowledgements can be
used.

40

CHAN
Spend a few minutes brainstorming with your

group. Try to provide answers to the
following questions:

What message types CHAN needs?
How can CHAN distinguish a dead server
from a slow server?
If you use message identifiers, how would
CHAN deal with hosts that reboot and reset
the identifier to the same old starting value?
How would CHAN implement
synchronization?

Format for CHAN
message header:

41

SELECT
Microprotocol SELECT must dispatch request messages to

the appropriate procedure in the server host.

Brainstorm with your group and attempt to identify the issues
that drive an implementation of SELECT. Two important
points to consider are:
– The addressing scheme used to identify each procedure.
– SELECT is a good place to manage concurrency: if client (or caller) is

multi-threaded, since CHAN allows only one outstanding call at a
time, SELECT should allow for calls made from independent threads
to execute concurrently rather than sequentially.

