
Threads
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne, Prof.
Xiannong Meng’s slides, and Blaise Barney (LLNL) “POSIX Threads Programming” online
tutorial.

1

Interlude

Pointer Recap

NAME
 wait, waitpid, waitid - wait for process to change state

SYNOPSIS
 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *status);

 pid_t waitpid(pid_t pid, int *status, int options);

Pointer Recap

 int ret_val;
 .
 .
 .
 ret_val = wait(—???—);
 .
 .
 .

Pointer Recap

 int ret_val;
 int *status;
 .
 .
 .
 ret_val = wait(status);
 .
 .
 .

 int ret_val;
 int status;
 .
 .
 .
 ret_val = wait(&status);
 .
 .
 .

• Do both options compile correctly?
• Do both options run correctly?
• Can you explain what each one does?

Function Recap

 int summation(int start, int end);

Function Recap

 int summation(int start, int end);

Function prototype

data
type of
return
value

function
name

formal
arguments

Function Recap

 int summation(int start, int end);

Function prototype

 int *f(int, int);

What is this???

Function Pointer Recap

 int summation(int start, int end);

Function prototype

 int *f(int, int);

Function pointer declaration

 f = summation;

Function pointer assignment

Function Pointer Parameter

 int compute(int, int, int *g(int, int);

Function prototype

Function body

int compute(int a, int b, int *g(int, int) {

 return g(a, b);

}

Function Recap

 int summation(int start, int end);

Function prototype

data
type of
return
value

function
name

formal
arguments

And now, our main attraction…

CSCI 315 Operating Systems Design

Motivation
• Many modern applications are multithreaded

• One process may contain multiple threads

• Different tasks within the application can be implemented by
different threads: update display, fetch data, check spelling,
service a network request

• Process creation is time consuming, thread creation is not

• Can simplify code, increase efficiency

• OS Kernels are generally multithreaded

13

More Motivation?

• Responsiveness: multiple threads can be
executed in parallel (in multi-core machines)

• Resource sharing: multiple threads have access
to the same data, sharing made easier

• Economy: the overhead in creating and managing
threads is smaller

• Scalability: more processors (or cores), more
threads running in parallel

14

CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server
request (1)

15 CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server
request (1)

thread(1)

create new thread to
service request

16

CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server

thread(1)

resume
listening for
new requests

17 CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server

thread(1)
request (2)

18

CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server

thread(1)
request (2)

create new thread to
service request

thread(2)

19 CSCI 315 Operating Systems Design

Multithreaded Server Architecture

client server

thread(1)

thread(2)

resume
listening for
new requests

20

CSCI 315 Operating Systems Design

Look at pthread_create(3)
NAME
 pthread_create - create a new thread

SYNOPSIS
 #include <pthread.h>

 int pthread_create(pthread_t *thread,  
 const pthread_attr_t *attr,
 void *(*start_routine) (void *),  
 void *arg);

 Compile and link with -pthread.

Explain:
(a) what void *p; means
(b) what this means: void *(*start_routine) (void *)

21 CSCI 315 Operating Systems Design

Here’s the code for my thread:

void *sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

22

CSCI 315 Operating Systems Design

OK, how to I understand this?

void *sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

23 CSCI 315 Operating Systems Design

Creating five identical threads
/* COMPILE WITH: gcc thread-ex.c -lpthread -o thread-ex */
#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS 5
#define SLEEP_TIME 3

void *sleeping(void *); /* forward declaration to thread routine */

int main(int argc, char *argv[]) {
int i;
pthread_t tid[NUM_THREADS]; /* array of thread IDs */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);

printf("main() reporting that all %d threads have terminated\n", i);
return (0);
} /* main */

24

CSCI 315 Operating Systems Design

So, threads can’t take parameters
and can’t return anything?

void * sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

A thread can take parameter(s) pointed by its arg and
can return a pointer to some memory location that stores
its results. Gotta be careful with these pointers!!!

25 CSCI 315 Operating Systems Design

Passing arguments into thread

pthread_t tid[NUM_THREADS]; /* array of thread IDs */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

...

26

• Casting is powerful, so it deserves to be used carefully

• This is disguising an integer as a void * (a hack?)

• Have to remove the disguise inside the thread routine

CSCI 315 Operating Systems Design

Passing arguments into thread

for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, thingie,(void *)SLEEP_TIME);

...

27

struct args_t {
 int id;
 char *str;
} myargs[NUM_THREADS];

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
}

CSCI 315 Operating Systems Design

Passing results out of thread

28

struct args_t {
 int id;
 char *str;
 double result;
} myargs[NUM_THREADS];

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
 p->result = 3.1415926 * p->id;
 return(NULL); // or return(arg)
}

Option 1

CSCI 315 Operating Systems Design

Passing results out of thread

29

struct args_t {
 int id;
 char *str;
} myargs[NUM_THREADS];

struct results_t {
 double result;
};

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 struct results_t *r = malloc(sizeof(struct results_t));

 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
 r->result = 3.1415926 * arg->id;
 return((void*) r);
}

Watch out for
memory leaks!

Option 2
CSCI 315 Operating Systems Design

Your thread returns a void *

30

What is the point of returning this value?

CSCI 315 Operating Systems Design

Look at pthread_join(3)
NAME
 pthread_join - join with a terminated thread

SYNOPSIS
 #include <pthread.h>

 int pthread_join(pthread_t thread, void **retval);  

31

Analogous to wait(2) and waitpid(2)

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

CSCI 315 Operating Systems Design

Look at pthread_join(3)
NAME
 pthread_join - join with a terminated thread

SYNOPSIS
 #include <pthread.h>

 int pthread_join(pthread_t thread, void **retval);  

32

A pointer to a pointer to something

CSCI 315 Operating Systems Design

Process

33

Process ID,
process group ID,
user ID, group ID,
Environment,
Program instructions,
Registers,
Stack,
Heap,
File descriptors,
Signal actions,
Shared libraries,
IPC message queues, pipes,
semaphores, or shared
memory).

Thread

34

Stack pointer
Registers
Scheduling properties
(such as policy or
priority)
Set of pending and
blocked signals
Thread specific data

Shared Memory Model

35

Text
Data
Heap

Thread
1

Stack

Thread
2

Stack

Thread
n

Stack
...

• All threads have access to the same global, shared memory
• Threads also have their own private data (how?)
• Programmers are responsible for protecting globally shared data

Thread Safeness

36

Thread
2

Thread
1

Thread
n

...

Library Storage

Thread Safeness

37

Thread
2

Thread
1

Thread
n

...

Thread 1 result
Library Storage

Library function (not thread-safe):
returns pointer to library storage

Thread Safeness

38

Thread
2

Thread
1

Thread
n

...

Thread 2 result Thread 1 result
Library Storage

Library function
(not thread-safe)

Thread Safeness

39

Thread
2

Thread
1

Thread
n

...

Library Storage
Thread 2 result

Uses pointer to get to results;
doesn’t see what it expected

fork(2) and exec(3)

40

How do you run a process
that has code (text) which is
not identical to its parent’s?

Amdhal’s Law

speedup ≤ 1

41

S + (1-S)

N

S = portion that must execute serially
(1-S) = portion that can be parallelized

N = number of cores

Challenges in Parallel Programming

• Identifying tasks
• Load balance
• Data splitting
• Data dependency
• Testing and debugging

42

Multithreading Models

43

User threads

44

Managed by a library without kernel support;  
runs at user level

Managed directly by the operating system

Kernel threads

Many-To-One Model

45

Disadvantages

Advantages

One-To-One Model

46

Disadvantages Advantages

Many-To-Many Model

47

Disadvantages

Advantages

Processes and Threads

48

What are thread pools?

49

Anything good or bad?

Inter process  
communication

Inter process communication

• file
• pipe
• shared memory
• message passing
• …

• remote
procedure call

• message passing
• sockets
• …

Processes on the
same machine

Processes on
different machines

Networking

54

Connectivity

Wish List:
– Interconnect machines.
– Maintain data confidentiality, data integrity, and
system accessibility.

– Support growth by allowing more and more
computers, or nodes, to join in (scalability).

– Support increases in geographical coverage.

55

Links

(a)

(b)

point-to-point

multiple-access

Geographical coverage and scalability are limited.

Each node needs one interface (NIC) for each link.

56

Switched Networks

Circuit Switched

■ ■ ■

Packet Switched

store-and-forward

57

Internetworking
To interconnect two or more
networks, one needs a gateway or
router.

Host-to-host connectivity is only
possible if there’s a uniform
addressing scheme and a routing
mechanism.

Messages can be sent to a single
destination (unicast), to multiple
destinations (multicast), or to all
possible destinations (broadcast).

58

Reliability

Networks must deal with:
–Physical damage to cables,
–Electromagnetic interference,
–Machine crashes and
reboots,

–Memory limitations,
–Software bugs.

Classes of failure:
– Bit errors (single bit or

burst),
– Packet loss,
– Link and node failures.

Challenge: Fill in the gap between what applications expect of the
medium and what underlying technologies can actually provide.

59

Range of Coverage

LAN: local area network.

WLAN: wireless local area network.

MAN: metropolitan area network.

WAN: wide area network (long haul network).

We can classify computer networks according to
their geographical coverage:

In interconnecting multiple networks (internetworking), we’re
interested in the seamless integration of all these levels. Note that
different levels use very different technologies.

60

Network Architecture

How is a layered architecture helpful in the
design of networks that meet the goals we
stated?

61

ISO: International Standards Organization
OSI: Open Systems Interconnection

Physical

Presentation

Session

Transport

Network

Data link

Application

The ISO/OSI Reference Model
Source: Computer Networks, Andrew Tanenbaum

The protocol stack:

The idea behind the model: Break up the
design to make implementation simpler.
Each layer has a well-defined function.
Layers pass to one another only the
information that is relevant at each level.
Communication happens only between
adjacent layers.

62

The Layers in the ISO/OSI RF Model
Physical: Transmit raw bits over the medium.

Data Link: Implements the abstraction of an error free medium
(handle losses, duplication, errors, flow control).

Network: Routing.

Transport: Break up data into chunks, send them down the protocol stack,
receive chunks, put them in the right order, pass them up.

Session: Establish connections between different users and different
hosts.

Presentation: Handle syntax and semantics of the info, such as
encoding, encrypting.

Application: Protocols commonly needed by applications (cddb, http,
ftp, telnet, etc).

63

Layer n-1

Layer n+1

Layer n

Communication Between Layers within a Host

SAP SAP…

SAP SAP…

SAPs (service access points)

Note: This is ISO terminology.

It’s important to specify
the services offered
to higher layers in
the hierarchy. What
they are + how to
use them = interface.

64

Communication Between Layers in Different Hosts

sender receiver

data data

AH data

PH data

SH data

TH data

NH data

DH DTdata

BITSPhysical

Presentation

Session

Transport

Network

Data link

Application

Physical

Presentation

Session

Transport

Network

Data link

Application

65

Communication Between Layers
in Different Hosts

One or more nodes within the
network.

66

The Layers in the TCP/IP Protocol Suite
Source: The TCP/IP Protocol Suite, Behrouz A. Forouzan

Physical

Data link

IP
ARP RARP

ICMP IGMP

Transport TCP UDP

Network

Session

Presentation

Application

FTP HTTP DNS NFS …

