Bucknell

UNIVERS

TY

Processes and More

CSCI 315 Operating Systems Design
Department of Computer Science

been largely based on.

Notice: The
textbook Operating Systems Concepts, 10ch ed, by Siberschatz, Gaivin, and Gagne. Many.
ifnotal,

Abstractions and Layers

layor N
 intertace

layero
nardware

OS Operations

o Interrupt driven by hardware
o Software error or request creates exception or trap
« Division by zero, request for operating system service

o Other process problems include infinite loop, processes modifying each other
or the operating system

« Dual-mode operation allows O to protect itself and other system
components

o User mode and kernel mode
« Mode bit provided by hardware
 Provides ability to distinguish when system is running user code or kernel
code

« Some instructions designated as privileged, only executable in kernel

 System call changes mode to kernel, return from call resets it to user
o Increasingly CPUs support multi-mode operations

o ie virtual machine manager (VMM) mode for guest VMs.

User and Kernel Modes

user process

I~] [(mode bit= 1)

\ 7.

Kernel

irap. el
moda bit=0. mode bit = 1

exocule systom cal

OS Services

ou batcn | commandine

[r—
Systemals

operatng sysem

Unix Structure

(the users)

shells and commands
compilers and interpreters
system libraries

‘system-call interface to the kermnel

- signals terminal file system CPU scheduling
2 indling swapping block /O page replacement
&1 | character 10 system system demand paging

terminal drivers disk and tape drivers virtual memory

kemel interface to the hardware

device controllers

memory controllers
isks and tapes

terminal controllers
terminals physical memory

Hardware Support for the OS

© Two classes of instructions: one class for anyone to use,
others with privileged use (for the OS kernel).

® Need to be able to switch between user mode and kernel
mode.

© Ifa user runs a privileged instruction, an exception is raised.

© To switch to kernel mode, you need to trap to the kernel.

user process.

[mer process excing [ot system can reum rom sysem cal | | (7092 L= 1)
vonca]
kernel trap return
o =0 o bR R
execute system call (mode bit = 0)

user
mode

mode

kernel

System Calls and the OS

Fa\

user application

b
ey
open()()

system call interface

open ()
Implementation
of open ()
system call

return

System Calls and Libraries

#include <stdoh>
()

pint (‘Grestings’)
remo;
)

o dard C l

stancard G lorar
kemel 4
moda

(o)

wite ()
(systomaan
N %

strace

1. perrone@inuxremoted:= (sh) o

strace - trace systen calls and signals

3 3 [-ocolum 1 [cexpr 1 ... [-ofile][
pid] ... [-sstrsize] [-uusernane] [varwval 1 ... [-Evor J
wv. [comond [arg ... 11

o1t [Coverhead] [-Ssortby] [comand
Cog... 11

In the simplest case runs the specified comand until it exits.
Tt intercepts and records the system calls which are called by a pro-
cess and the signals which arelreceived by a process. The name of each
systen call, its arguments and its return value are printed on standard
error or to the file specified with the -0 option.

is o useful diogrostic, instructional, and debugging tool. Sys-
ten_administrators, diognosticians ond trouble-shooters will Find it
invaluable for solving problens with programs for which the source is W
not readily available since they do not need to be reconpiled in order.

Forking
(yeah, it’s a thing,a Unix thing)

Forking
(yeah, it’s a thing, a Unix thing)

parent

child

* Process —a program in
execution; the code in a
process executes
sequentially. (Ahem,
mostly.To be discussed

later.)

* A process includes:
~ program counter,
— stack,
— data section.

Process Concept

stack

heap

pr

code

Creating processes in Unix
(Always RTFMP)

g
i Progremer's e

oting the calling p

, d this o nateh the

nitially emty Csigoen

Manual_poge fork(z) Tine 1 Gress for help or 4 @ Gt

Forking

(what that return value is for)

parent

int pid;

pid = fork();

|

Forking

(what that return value is for)

parent

pid =

int pid;

what’s the value of pid?

fork();
]

|

Using fork safely
int pid;
;id = fork();

if (0 = pid) {
// code of the parent

} else {
// code of the child

Using fork safely
int pid;
;id = fork();

if (0 1= pid) {
// code of the parent

} else {
// code of the child

Using fork even more safely

int pid;
pid = fork();
if (-1 1= pid) {

// error handling

} else if (0 != pid) {
// code of parent P

else {
// code of child ¢

Using fork safely
int pid;
;id = fork();

if (0 1= pid) {
// code of parent P

} else {
// code of child C

Using fork safely

int pidl, pid2;
pidl = fork();
if (0 1= pidl) {
/1 code of parent P
} else {
// code of child c1
if (0 != pid2) {
// code of child Cl, parent of €2
} else {
// code of child c2

Joining processes in Unix
(Always RTFMP)

Waiting
(the inverse of forking)

parent

child

Waiting

(the inverse of forking)

parent

int s;

wait(&s);
parent
blocks

Waiting

(the inverse of forking)

parent

int s;

|

wait(&s);

!

child

parent
blocks

Waiting

(the inverse of forking)

parent

int s;

wait(&s);

parent
unblocks

Process Control Block (PCB)

OS bookkeeping information associated

process id

process state

Process state,
« Program counter, program counter

« CPU registers,

+ CPU scheduling information, registers

Memory-management information, memory limits

« Accounting information,
list of open files

* /O status information,

Process State

As a process executes, it changes state:

— new: The process is being created.

— running: Instructions are being executed.

— waiting: The process is waiting for some event to
oceur.

— ready: The process is waiting to be assigned to a
processor.

— terminated: The process has finished execution.

Linux Process Control

*ps(l)

* top(1) (MacOS X: make your terminal wide)
e htop(1)

e pstree(1l)

e kill(1)

Processes in Linux

sshd
pid=3028

<shd
pid=3610

Process State Transition Diagram

admitted

scheduler dispatch "
terminated

running

interrupt

/0 or event wait
/0 or event completion

Process Scheduling Queues

* Job queue — set of all processes in the system.

* Ready queue - set of all processes residing in main
memory, ready and waiting to execute.

* Device queues — set of processes waiting for an
1/O device.

Processes migrate between the various queues.

Processes and OS Queues

Process Scheduling

Context Switch

When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process.

Context-switch time is overhead; the system does
no useful work while switching.

Time dependent on hardware support.

CPU Switching

process P, operating system process P,

interrupt or system call

executing
T save stale into PCB,

: idle

reload state from PCB,|

idle interrupt or system call executing
5 idle

reload state from PCEB]
oxecuing ||

“ (SN 'Eg‘s_'m 'eg's_‘e“ 1/O wait queue 1/0 request
time slice
expired

PCB, PCB,, PCB, termination create child

1] 1] — ‘wait queue process

interrupt interrupt ‘wait for an

wait head oceurs wait queue interrupt
queue tail

* Long-term scheduler (or job scheduler) —
selects which processes should be brought
into the ready queue

* Short-term scheduler (or CPU scheduler)
— selects which process should be executed
next and allocates CPU

* Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow; controls the degree of
multiprogramming)

+ Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

Processes can be described as either:

— 1/0-bound process — spends more time doing l/O than
computations, many short CPU bursts

CPU-bound process — spends more time doing
computations; few very long CPU bursts

Process Creation

Parent process create children processes, which, in turn can
create other processes, forming a tree of processes.

Resource sharing:

— Parent and children share all resources,

— Children share subset of parent’s resources,
— Parent and child share no resources.

Execution:
— Parent and children execute concurrently,
— Parent may wait until children terminate.

Process Creation (Cont.)

* Address space:
— Child has duplicate of parent’s address space, or
— Child can have a program loaded onto it.

* UNIX examples:

— fork system call creates new process and returns with a
pid (0 in child,> 0 in the parent),
— exec system call can be used after a fork to replace the

process’ memory space with a new program.

Process Termination

Process executes last statement and asks the operating
system to terminate it (exit)

— Output data from child to parent (via wait)

— Process’ resources are deallocated by operating system
Parent may terminate execution of children processes
(abort) if:

— Child has exceeded allocated resources,

— Task assigned to child is no longer required,

— If parent is exiting (some operating system do not allow child to
continue if its parent terminates)
— Al children terminated - cascading terminaton

Cooperating Processes

.

An independent process cannot affect or be
affected by the execution of another process.

A cooperating process can affect or be affected
by the execution of another process.

Advantages of process cooperation:

— Information sharing,

— Computation speed-up,

— Modularity,

— Convenience.

Buffering

Synchronization

Queue of messages attached to the link;
implemented in one of three ways:

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity — finite length of n messages.
Sender must wait if link full.

3. Unbounded capacity — infinite length. Sender
never waits.

* Message passing may be either blocking or non-blocking.
* Blocking is considered synchronous:
— Blocking send has the sender block until the message is received.
— Blocking receive has the receiver block until a message is
available.
+ Non-blocking is considered asynchronous
— Non-blocking send has the sender send the message and continue.

— Non-blocking receive has the receiver receive a valid message or
null.

Interprocess Communication (pc)

Mechanism for processes to communicate and to synchronize
their actions

Message system — processes communicate with each other
without resorting to shared variables
IPC facility provides two operations:
— send(message), receive(message)
— where message has fixed or variable size
If processes P and Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive
Implementation of communication link
— physical (e.g. shared memory, hardware bus)
_ logical (e.g. logical properties)

IPC Properties

+ Buffering
- Capacity
+ Synchronization

+ Service model
+ Shared memory
« Direct or indirect

Implementation Questions

How are links established?

Can a link be associated with more than two
processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can
accommodate fixed or variable?

Is a link unidirectional or bi-directional?

Unix pipe(2)

- Point to point

- Unidirectional

- For processes related by birth (same machine)

- Reliable delivery

- Stream of bytes

-FIFO

- Virtually identical to reading and writing to a file
(low level file I/O)

Unix pipe(2)

A process PO is born

open
files

stdin
stdout P

stderr

Before creating a child with whom it will
communicate, it creates a pipe (system call).

Unix pipe(2)

. 2c int array
stdin D & y

stdout D
stderr D
B
Ll

Unix pipe(2)

PO closes the input end of Pl closes the output end
the pipe (index 0) of the pipe (index 1)

Unix pipe(2)

X_>X

PO closes the input end of Pl closes the output end
the pipe (index 0) of the pipe (index 1)

Unix pipe(2)

open
files

. 2c int array
stdin & Y

stdout

stderr

Then... it creates child P| with fork

Unix pipe(2)

p2c int array p2c int array

PI’s local copy
with values
inherited from PO

Unix pipe(2)

._X__’x

PO writes to file PI reads from file
descriptor p2c[1] descriptor p2c[0]
write(2) read(2)

IPC Mechanisms

* File
* Pipe » What are the
. properties of each?
* Named pipe + What are the
* Shared memory advantages and

disadvantages of
each?

Mailbox + How do you select
one to use?

Message passing

Remote procedure calls
Sockets (TCP, datagram)

Direct Communication

* Processes must name each other explicitly:
— send (P message) — send a message to process P
— receive(Q, message) — receive a message from process Q

* Properties of communication link
— Links are established automatically
— Alink is associated with exactly one pair of communicating processes
— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-directional

Indirect Communication

Messages are directed and received from mailboxes (also
referred to as ports)

— Each mailbox has a unique id

— Processes can communicate only if they share a mailbox

Properties of communication link

— Link established only if processes share a common mailbox

— Alink may be associated with many processes

— Each pair of processes may share several communication links
— Link may be unidirectional or bi-directional

Indirect Communication

Operations:

— create a new mailbox,

— send and receive messages through mailbox,
— destroy a mailbox.

Primitives are defined as:

send(A, message) — send a message to mailbox A,

receive(A, message) — receive a message from
mailbox A.

Indirect Communication

* Mailbox sharing
— P, P, and P; share mailbox A
— P, sends; P, and P; receive
— Who gets the message?
* Solutions
— Allow a link to be associated with at most two processes

— Allow only one process at a time to execute a receive
operation

— Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

