
Processes and More
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, 10th ed., by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

Abstractions and Layers

OS Services

Unix Structure

OS Operations
• Interrupt driven by hardware

• Software error or request creates exception or trap
• Division by zero, request for operating system service

• Other process problems include infinite loop, processes modifying each other
or the operating system

• Dual-mode operation allows OS to protect itself and other system
components

• User mode and kernel mode
• Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or kernel
code

• Some instructions designated as privileged, only executable in kernel
mode

• System call changes mode to kernel, return from call resets it to user

• Increasingly CPUs support multi-mode operations

• i.e. virtual machine manager (VMM) mode for guest VMs

User and Kernel Modes

Hardware Support for the OS
• Two classes of instructions: one class for anyone to use,

others with privileged use (for the OS kernel).

• Need to be able to switch between user mode and kernel
mode.

• If a user runs a privileged instruction, an exception is raised.

• To switch to kernel mode, you need to trap to the kernel.

System Calls and the OS

System Calls and Libraries

strace

Process Concept

• Process – a program in
execution; the code in a
process executes
sequentially. (Ahem,
mostly. To be discussed
later.)

• A process includes:
– program counter,

– stack,

– data section.

heap

stack

data

code

program counter

Creating processes in Unix
(Always RTFMP)

Forking
(yeah, it’s a thing, a Unix thing)

fork();

Forking
(yeah, it’s a thing, a Unix thing)

fork();

fork();

parent

child

pid = fork();

int pid;

parent

Forking
(what that return value is for)

pid = fork();

int pid;

parent

child

pid = fork();

int pid;

what’s the value of pid?

what’s the value of pid?

Forking
(what that return value is for)

Using fork safely
int pid;

…

pid = fork();

if (0 != pid) {

 // code of the parent

 …

} else {

 // code of the child

 …

}

…

Using fork safely
int pid;

…

pid = fork();

if (0 != pid) {

 // code of the parent

 …

} else {

 // code of the child

 …

}

…

Using fork safely
int pid;

…

pid = fork();

if (0 != pid) {

 // code of parent P

 …

} else {

 // code of child C

 …

}

…

P

C

Using fork safely
int pid1, pid2;

pid1 = fork();

if (0 != pid1) {

 // code of parent P

 …

} else {

 // code of child C1

 if (0 != pid2) {

// code of child C1, parent of C2

…

 } else {

 // code of child C2

 …

 }

}

P

C1

C2

Using fork even more safely
int pid;

pid = fork();

if (-1 != pid) {

// error handling

…

} else if (0 != pid) {

 // code of parent P

 …

} else {

 // code of child C

 …

}

P

C

Joining processes in Unix
(Always RTFMP)

Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);

Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);

parent  
blocks

Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);

parent  
blocks

Waiting
(the inverse of forking)

wait(&s);

int s;

parent

parent  
unblocks

Linux Process Control

• ps(1)
• top(1) (MacOS X: make your terminal wide)
• htop(1)
• pstree(1)
• kill(1)

!27

Processes in Linux

Process Control Block (PCB)

OS bookkeeping information associated
with each process:

• Process state,

• Program counter,

• CPU registers,

• CPU scheduling information,

• Memory-management information,

• Accounting information,

• I/O status information,

process id

process state

program counter

registers

memory limits

list of open files

Process State

As a process executes, it changes state:

– new: The process is being created.
– running: Instructions are being executed.
– waiting: The process is waiting for some event to

occur.
– ready: The process is waiting to be assigned to a

processor.
– terminated: The process has finished execution.

Process State Transition Diagram

new

ready

terminated

running

waiting

admitted

interrupt

exit

scheduler dispatch

I/O or event wait
I/O or event completion

Process Scheduling Queues
• Job queue – set of all processes in the system.

• Ready queue – set of all processes residing in main
memory, ready and waiting to execute.

• Device queues – set of processes waiting for an 
 I/O device.

Processes migrate between the various queues.

Processes and OS Queues

Process Scheduling

Schedulers

• Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue

• Short-term scheduler (or CPU scheduler)
– selects which process should be executed
next and allocates CPU

– CPU-bound process – spends more time doing
computations; few very long CPU bursts

– I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

Schedulers
• Long-term scheduler is invoked very infrequently

(seconds, minutes) ⇒ (may be slow; controls the degree of

multiprogramming)

• Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast)

Processes can be described as either:

Context Switch

• When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process.

• Context-switch time is overhead; the system does
no useful work while switching.

• Time dependent on hardware support.

CPU Switching

Process Creation
• Parent process create children processes, which, in turn can

create other processes, forming a tree of processes.

• Resource sharing:
– Parent and children share all resources,

– Children share subset of parent’s resources,

– Parent and child share no resources.

• Execution:
– Parent and children execute concurrently,

– Parent may wait until children terminate.

Process Creation (Cont.)

• Address space:
– Child has duplicate of parent’s address space, or
– Child can have a program loaded onto it.

• UNIX examples:
– fork system call creates new process and returns with a

pid (0 in child, > 0 in the parent),
– exec system call can be used after a fork to replace the

process’ memory space with a new program.

Process Termination

• Process executes last statement and asks the operating
system to terminate it (exit)
– Output data from child to parent (via wait)

– Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes
(abort) if:
– Child has exceeded allocated resources,

– Task assigned to child is no longer required,

– If parent is exiting (some operating system do not allow child to
continue if its parent terminates)

– All children terminated - cascading termination

Cooperating Processes

• An independent process cannot affect or be
affected by the execution of another process.

• A cooperating process can affect or be affected
by the execution of another process.

• Advantages of process cooperation:
– Information sharing,
– Computation speed-up,
– Modularity,
– Convenience.

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:
– send(message), receive(message)

– where message has fixed or variable size
• If processes P and Q wish to communicate, they need to:

– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus)
– logical (e.g., logical properties)

IPC Properties

• Buffering
• Capacity
• Synchronization
• Service model
• Shared memory
• Direct or indirect

Buffering

Queue of messages attached to the link;
implemented in one of three ways:

1. Zero capacity – 0 messages 
Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages.
Sender must wait if link full.

3. Unbounded capacity – infinite length. Sender
never waits.

Synchronization

• Message passing may be either blocking or non-blocking.

• Blocking is considered synchronous:
– Blocking send has the sender block until the message is received.

– Blocking receive has the receiver block until a message is
available.

• Non-blocking is considered asynchronous
– Non-blocking send has the sender send the message and continue.

– Non-blocking receive has the receiver receive a valid message or
null.

Implementation Questions

• How are links established?
• Can a link be associated with more than two

processes?
• How many links can there be between every pair of

communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can

accommodate fixed or variable?
• Is a link unidirectional or bi-directional?

Unix pipe(2)

- Point to point
- Unidirectional
- For processes related by birth (same machine)
- Reliable delivery
- Stream of bytes
- FIFO
- Virtually identical to reading and writing to a file
(low level file I/O)

Unix pipe(2)

P0

0

1

2

open
files

A process P0 is born

stdin

stdout

stderr

Before creating a child with whom it will
communicate, it creates a pipe (system call).

Unix pipe(2)

P0

0

1

2

open
files

stdin

stdout

stderr

p2c[0]

p2c[1]

p2c int array

3

4

Unix pipe(2)

P0

0

1

2

open
files

stdin

stdout

stderr

p2c[0]

p2c[1]

p2c int array

3

4
Then… it creates child P1 with fork

Unix pipe(2)

P0
p2c[0]

p2c[1]

p2c int array

P1
p2c[0]

p2c[1]

p2c int array

P1’s local copy
with values

inherited from P0

Unix pipe(2)

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 closes the input end of
the pipe (index 0)

P1 closes the output end
of the pipe (index 1)

Unix pipe(2)

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 closes the input end of
the pipe (index 0)

P1 closes the output end
of the pipe (index 1)

Unix pipe(2)

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 writes to file
descriptor p2c[1]

P1 reads from file
descriptor p2c[0]

write(2) read(2)

IPC Mechanisms

• File
• Pipe
• Named pipe
• Shared memory
• Message passing
• Mailbox
• Remote procedure calls
• Sockets (TCP, datagram)

• What are the
properties of each?

• What are the
advantages and
disadvantages of
each?

• How do you select
one to use?

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-directional

Indirect Communication

• Messages are directed and received from mailboxes (also
referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common mailbox

– A link may be associated with many processes

– Each pair of processes may share several communication links

– Link may be unidirectional or bi-directional

Indirect Communication

• Operations:
– create a new mailbox,
– send and receive messages through mailbox,
– destroy a mailbox.

• Primitives are defined as:
send(A, message) – send a message to mailbox A,
receive(A, message) – receive a message from
mailbox A.

Indirect Communication
• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Solutions
– Allow a link to be associated with at most two processes
– Allow only one process at a time to execute a receive

operation
– Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

