
Threads
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne, Prof.
Xiannong Meng’s slides, and Blaise Barney (LLNL) “POSIX Threads Programming” online
tutorial.

 1

Interlude

Pointer Recap

NAME
 wait, waitpid, waitid - wait for process to change state

SYNOPSIS
 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *status);

 pid_t waitpid(pid_t pid, int *status, int options);

Pointer Recap

 int ret_val;
 .
 .
 .
 ret_val = wait(—???—);
 .
 .
 .

Pointer Recap

 int ret_val;
 int *status;
 .
 .
 .
 ret_val = wait(status);
 .
 .
 .

 int ret_val;
 int status;
 .
 .
 .
 ret_val = wait(&status);
 .
 .
 .

• Do both options compile correctly?
• Do both options run correctly?
• Can you explain what each one does?

Pointer Recap 2

 char *c;
 .
 .
 .
 *c = ’a';
 .
 .
 .

• Do this compile correctly?
• Do this run correctly?

Pointer Recap 2

 char *c;
 .
 .
 .
 *c = 'a';
 .
 .
 .

 char *c = malloc(10);
 .
 .
 .
 *c = ‘a';
 .
 .
 .

What is the difference between the two?

Pointer Recap 2

 char *c = malloc(10);
 .
 .
 .
 *c = 'a';
 c[1] = c[0];
 *(c+2) = c[1];
 .
 .

• What is the value of c[1] after the assignment?
• What is the value of c[2] after the assignment?

 char *c = malloc(10);
 .
 .
 .
 *c = 'a';
 .
 .
 .

Function Recap

 int summation(int start, int end);

Function Recap

 int summation(int start, int end);

Function prototype

data
type of
return
value

function
name

formal
arguments

Function Recap

 int summation(int start, int end);

Function prototype

 int *f(int, int);

What is this???

Function Pointer Recap

 int summation(int start, int end);

Function prototype

 int *f(int, int);

Function pointer declaration

 f = summation;

Function pointer assignment

Function Pointer Parameter

 int compute(int, int, int *g(int, int);

Function prototype

Function body

int compute(int a, int b, int *g(int, int) {

 return g(a, b);

}

Function Recap

 int summation(int start, int end);

Function prototype

data
type of
return
value

function
name

formal
arguments

And now, our main attraction…

Motivation
• Process level concurrency is often not enough.

• One process may contain multiple threads.

• Many modern applications are multithreaded.

• Different tasks within the application can be
implemented by different threads: update display, fetch
data, check spelling, service a network request.

• Process creation is time consuming, thread creation is not.

• Threads can simplify coding and increase efficiency.

• OS Kernels are generally multithreaded. OS and/or libraries
have support for user-level threads.

More Motivation?

• Responsiveness: multiple threads can be
executed in parallel (in multi-core machines)

• Resource sharing: multiple threads have access
to the same data, sharing made easier

• Economy: the overhead in creating and managing
threads is smaller

• Scalability: more processors (or cores), more
threads running in parallel

Applications: A Hierarchical View
computer

programs

processes

…

…

threads

Concurrency and Parallelism

Concurrent execution in single-core system

Parallelism on multi-core system

Look at pthread_create(3)
NAME
 pthread_create - create a new thread

SYNOPSIS
 #include <pthread.h>

 int pthread_create(pthread_t *thread,  
 const pthread_attr_t *attr,
 void *(*start_routine) (void *),  
 void *arg);

 Compile and link with -pthread.

Explain:
(a) what void *p; means
(b) what this means: void *(*start_routine) (void *)

Here’s the code for my thread:

void *sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

OK, how do I understand this?

void *sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

Creating five identical threads
/* COMPILE WITH: gcc thread-ex.c -lpthread -o thread-ex */
#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS 5
#define SLEEP_TIME 3

void *sleeping(void *); /* forward declaration to thread routine */

int main(int argc, char *argv[]) {
int i;
pthread_t tid[NUM_THREADS]; /* array of thread IDs */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);

printf("main() reporting that all %d threads have terminated\n", i);
return (0);
} /* main */

So, threads can’t take parameters
and can’t return anything?

void * sleeping(void *arg) {
 int sleep_time = (int)arg;
 printf("thread %ld sleeping %d seconds ...\n",  
 pthread_self(), sleep_time);
 sleep(sleep_time);
 printf("\nthread %ld awakening\n", pthread_self());
 return (NULL);
}

A thread can take parameter(s) pointed by its arg and
can return a pointer to some memory location that stores
its results. Gotta be careful with these pointers!!!

Passing arguments into thread

pthread_t tid[NUM_THREADS]; /* array of thread IDs */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

...

• Casting is powerful, so it deserves to be used carefully

• This is disguising an integer as a void * (a hack?)

• Have to remove the disguise inside the thread routine

Passing arguments into thread

for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], NULL, thingie,(void *)&myargs[i]);

...

struct args_t {
 int id;
 char *str;
} myargs[NUM_THREADS];

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
}

Passing results out of thread
struct args_t {
 int id;
 char *str;
 double result;
} myargs[NUM_THREADS];

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
 p->result = 3.1415926 * p->id;
 return(NULL); // or return(arg)
}

Option 1

Passing results out of thread

!28

struct args_t {
 int id;
 char *str;
} myargs[NUM_THREADS];

struct results_t {
 double result;
};

void * thingie(void *arg) {
 struct args_t *p = (struct args_t*) arg;
 struct results_t *r = malloc(sizeof(struct results_t));

 printf(“thread id= %d, message= %s\n”, p->id, p->msg);
 r->result = 3.1415926 * arg->id;
 return((void*) r);
}

Watch out for
memory leaks!

Option 2

Your thread returns a void *

!29

What is the point of returning this value?

Look at pthread_join(3)
NAME
 pthread_join - join with a terminated thread

SYNOPSIS
 #include <pthread.h>

 int pthread_join(pthread_t thread, void **retval);  

Analogous to wait(2) and waitpid(2)

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

Look at pthread_join(3)
NAME
 pthread_join - join with a terminated thread

SYNOPSIS
 #include <pthread.h>

 int pthread_join(pthread_t thread, void **retval);  

A pointer to a pointer to something

Threads and Processes

Process
Process ID,
process group ID,
user ID, group ID,
Environment,
Program instructions,
Registers,
Stack,
Heap,
File descriptors,
Signal actions,
Shared libraries,
IPC message queues, pipes,
semaphores, or shared
memory).

Thread

Stack pointer
Registers
Scheduling properties
(such as policy or
priority)
Set of pending and
blocked signals
Thread specific data

Thread

Shared Memory Model

Text
Data
Heap

Thread
1

Stack

Thread
2

Stack

Thread
n

Stack
...

• All threads have access to the same global, shared memory
• Threads also have their own private data (how?)
• Programmers are responsible for protecting globally shared data

Thread Safety

Thread
2

Thread
1

Thread
n

...

Library Storage

Thread Safety

Thread
2

Thread
1

Thread
n

...

Thread 1 result
Library Storage

Library function (not thread-safe):
returns pointer to library storage

Thread Safety

Thread
2

Thread
1

Thread
n

...

Thread 2 result Thread 1 result
Library Storage

Library function
(not thread-safe)

Thread Safety

Thread
2

Thread
1

Thread
n

...

Library Storage
Thread 2 result

Uses pointer to get to results;
doesn’t see what it expected

Thinking about Performance

Speedup

speedup =
time of the parallel solution

time of the best sequential solution

If you care about performance, your speed  
up needs to be bigger than 1. (If it’s not, you  
have a problem.) But you need to be honest!

Amdhal’s Law

speedup ≤ 1

S + (1-S)

N

S = portion that must execute serially
(1-S) = portion that can be parallelized

N = number of cores

AMDAHL’S LAW
SPEED UP BOUND

SERIAL
(SEC)

PARALLEL
(SEC)

0.001 0.999

0.005 0.995

0.01 0.99

0.05 0.95

0.1 0.9

0.5 0.5

CORES SPEEDUP BOUND

1 1.000

2 1.990

4 3.941

8 7.729

16 14.884

32 27.706

64 48.669

128 78.287

256 112.527

512 144.023

CORES SPEEDUP BOUND

1 1.000

2 1.980

4 3.883

8 7.477

16 13.913

32 24.427

64 39.264

128 56.388

256 72.113

512 83.797 1.000

10.000

100.000

CORES
1 2 4 8 16 32 64 128 256 512

1/1000
 5/1000
 1/100
 5/100
 LINEAR SPEEDUP

CORES SPEEDUP BOUND

1 1.000

2 1.905

4 3.478

8 5.926

16 9.143

32 12.549

64 15.422

128 17.415

256 18.618

512 19.284

CORES SPEEDUP BOUND

1 1.000

2 1.998

4 3.988

8 7.944

16 15.764

32 31.038

64 60.207

128 113.576

256 203.984

512 338.848

CORES LINEAR SPEEDUP

1 1.000

2 2.000

4 4.000

8 8.000

16 16.000

32 32.000

64 64.000

128 128.000

256 256.000

512 512.000

�1

Challenges in Parallel Programming

• Identifying “parallelizable” tasks
• Load balance
• Data decomposition
• Data dependency
• Testing and debugging

Multithreading Models

User threads
Managed by a library without kernel support;  
runs at user level

Managed directly by the operating system

Kernel threads

Many-To-One Model

Disadvantages

Advantages

One-To-One Model

Disadvantages Advantages

Many-To-Many Model

Disadvantages

Advantages

What are thread pools?

Anything good or bad?

A Typical Application

Multithreaded Server Architecture

client server
request (1)

Multithreaded Server Architecture

client server
request (1)

thread(1)

create new thread to
service request

Multithreaded Server Architecture

client server

thread(1)

resume
listening for
new requests

Multithreaded Server Architecture

client server

thread(1)
request (2)

Multithreaded Server Architecture

client server

thread(1)
request (2)

create new thread to
service request

thread(2)

Multithreaded Server Architecture

client server

thread(1)

thread(2)

resume
listening for
new requests

Inter process  
communication

Inter process communication

• file
• pipe
• shared memory
• message passing
• …

• remote
procedure call

• message passing
• sockets
• …

Processes on the
same machine

Processes on
different machines

Networking

Connectivity

Wish List:
– Interconnect machines.
– Maintain data confidentiality, data integrity, and
system accessibility.

– Support growth by allowing more and more
computers, or nodes, to join in (scalability).

– Support increases in geographical coverage.

Links

(a)

(b)

point-to-point

multiple-access

Geographical coverage and scalability are limited.

Each node needs one interface (NIC) for each link.

Switched Networks

Circuit Switched

■ ■ ■

Packet Switched

store-and-forward

Internetworking
To interconnect two or more
networks, one needs a gateway or
router.

Host-to-host connectivity is only
possible if there’s a uniform
addressing scheme and a routing
mechanism.

Messages can be sent to a single
destination (unicast), to multiple
destinations (multicast), or to all
possible destinations (broadcast).

ISO: International Standards Organization
OSI: Open Systems Interconnection

Physical

Presentation

Session

Transport

Network

Data link

Application

The ISO/OSI Reference Model
Source: Computer Networks, Andrew Tanenbaum

The protocol stack:

The idea behind the model: Break up the
design to make implementation simpler.
Each layer has a well-defined function.
Layers pass to one another only the
information that is relevant at each level.
Communication happens only between
adjacent layers.

The Layers in the ISO/OSI RF Model
Physical: Transmit raw bits over the medium.

Data Link: Implements the abstraction of an error free medium
(handle losses, duplication, errors, flow control).

Network: Routing.

Transport: Break up data into chunks, send them down the protocol stack,
receive chunks, put them in the right order, pass them up.

Session: Establish connections between different users and different
hosts.

Presentation: Handle syntax and semantics of the info, such as
encoding, encrypting.

Application: Protocols commonly needed by applications (cddb, http,
ftp, telnet, etc).

Communication Between Layers in Different Hosts

sender receiver

data data

AH data

PH data

SH data

TH data

NH data

DH DTdata

BITSPhysical

Presentation

Session

Transport

Network

Data link

Application

Physical

Presentation

Session

Transport

Network

Data link

Application

The Layers in the TCP/IP Protocol Suite
Source: The TCP/IP Protocol Suite, Behrouz A. Forouzan

Physical

Data link

IP
ARP RARP

ICMP IGMP

Transport TCP UDP

Network

Session

Presentation

Application

FTP HTTP DNS NFS …

Socket Functions

socket()

connect()

write()

read()

close()

socket()

bind()

write()

read()

close()

read()

listen()

accept()

process request

block until connection from client

TCP 3-way handshake

data (request)

data (reply)

end-of-file notification

TCP Client TCP Server

