Source: Operating Systems Concepts}, Silberschatz, Galvin, and Gagne, 9th edition.

Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process	Burst Time	Priority
P ₁	10	3
P ₂	1	1
P ₃	2	3
P ₄	1	4
P ₅	5	2

The processes are assumed to have arrived in at the times given as follows: P_1 arrives at time 0, P_2 arrives at time 8, P_3 arrives at time 8, P_5 arrives at time 9, P_4 arrives at time 10.

Consider the following scheduling algorithms: first-come, first-serve (FCFS), shortest-job first (SJF), nonpreemptive priority (a smaller number implies a higher priority), round-robin (RR) with *quantum*=1, and RR with *quantum*=2.

- 1) For each of the algorithms above:
 - Draw a Gantt chart to illustrate the execution of these processes
 - Calculate individual process turnaround times and the average turnaround time
 - Calculate individual waiting times and average waiting time
- 2) Which of the algorithms considered is *the best* scheduling algorithm? Justify your choice be explaining what criteria you used to identify what you called *the best*.
- 3) Some of these scheduling algorithms may result in process *starvation*. If any of them does, make the best argument you can to explain how you reached that conclusion.
- 4) How realistic is it to assume that the scheduling algorithm will have the length of CPU bursts for the processes that it will need to schedule? How/where can one get information on the length of CPU bursts for a CPU scheduling algorithm to use?