
CPU Scheduling
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if
not all, the illustrations contained in this presentation come from this source.

\

Basic Concepts
P0

P1

P3

P4

P2

Questions:
• When does a process start competing for the CPU?

• How is the queue of ready processes organized?

• How much time does the system allow a process to use the CPU?

• Does the system allow for priorities and preemption?

• What does it mean to maximize the system’s performance?

CPU

Basic Concepts

• You want to maximize CPU utilization through
the use of multiprogramming.

• Each process repeatedly goes through cycles that
alternate CPU execution (a CPU burst) and I/O wait
(an I/O wait).

• Empirical evidence indicates that CPU-burst lengths
have a distribution such that there is a large number
of short bursts and a small number of long bursts.

Alternating Sequence of CPU and I/O Bursts

• Goal: maximize CPU utilization with
multiprogramming

• Process execution consists of cycles of
CPU execution and I/O wait

• A CPU burst is followed by an I/O
burst  

• The probability distribution of CPU
bursts is an important concern

Histogram of CPU-burst Times

CPU Scheduler

• AKA short-term scheduler.

• Selects from among the processes in memory, which are
ready queue and has the dispatcher give the CPU to one of
them.

• The schedule needs to execute when a process:
1. Switches from running to waiting state,

2. Switches from running to ready state,

3. Switches from waiting to ready,

4. Terminates.

Process State Transition Diagram

new

ready

terminated

running

waiting

admitted

interrupt

exit

scheduler dispatch

I/O or event wait
I/O or event completion

Preemptive Scheduling ?

• In cooperative or nonpreemptive scheduling, when a
process takes the CPU, it keeps it until the process either
enters waiting state or terminates.

• In preemptive scheduling, a process holding the CPU
may lose it. Preemption causes context-switches, which
introduce overhead. Preemption also calls for care when a
process that loses the CPU is accessing data shared with
another process or kernel data structures.

Dispatcher

• The dispatcher module gives control of the CPU
to the process selected by the short-term scheduler;
this involves:
– switching context,
– switching to user mode,

– jumping to the proper location in the user program to
restart that program.

• The dispatch latency is the time it takes for the
dispatcher to stop one process and start another
running.

Scheduling Criteria

These are performance metrics such as:

• CPU utilization – high is good; the system works best when the
CPU is kept as busy as possible.

• Throughput – the number of processes that complete their
execution per time unit.

• Turnaround time – amount of time to execute a particular
process.

• Waiting time – amount of time a process has been waiting in the
ready queue.

• Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment).

It makes sense to look at the averages of these metrics.

Optimizing Performance

• Maximize CPU utilization
• Maximize throughput

• Minimize turnaround time
• Minimize waiting time
• Minimize response time

Scheduling Algorithms

Gantt Chart
A Gantt chart is a type of bar chart that illustrates a
project schedule (circa 1910). Modern Gantt charts also
show the dependency relationships between activities and
current schedule status.

https://en.wikipedia.org/wiki/Gantt_chart

https://en.wikipedia.org/wiki/Gantt_chart

Process Burst Time
P1 24

 P2 3

 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:  
 
 
 
 

• Waiting times: ?

• Average waiting time: ?

First-Come, First-Served (FCFS)

Process Burst Time
P1 24

 P2 3

 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:  
 
 
 
 

• Waiting times: P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27) / 3 = 17

First-Come, First-Served (FCFS)

P1 P2 P3

24 27 300

FCFS
Suppose that the processes arrive in the order

 P2 , P3 , P1

• The Gantt chart for the schedule is:  

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case.

• Convoy effect: all process are stuck waiting until a long process
terminates.

P1P3P2

63 300

Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU burst.

Use these lengths to schedule the process with the shortest
time.

• Two schemes:
– Nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.

– Preemptive – if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt. This
scheme is know as the Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time for a
given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Preemptive SJF
 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4
• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of the
Next CPU-Burst

Sorry, no crystal ball.
But… we can use some smart math!

Determining Length of the
Next CPU-Burst

• We can only estimate the length.
• This can be done by using the length of previous

CPU bursts, using exponential averaging:

0 ↵ 1

tn = measured length of the nth CPU burst

Tn = estimated length of the nth CPU burst

Tn+1 = 𝛼 tn + (1-𝛼) Tn

𝛼 = weight value, where

Prediction of the Length of the
Next CPU-Burst

Priority Scheduling
• A priority number (integer) is associated with each process.

• The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)

– Preemptive

– Nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU-burst
time.

• Problem: Starvation – low priority processes may never execute.

• Solution: Aging – as time progresses increase the priority of the
process.

Round Robin (RR)
• Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU
time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

• Performance:

– q too large ⇒ devolves into FCFS

– q too small ⇒ excessive context switching; q must be large with

respect to context switch, otherwise overhead is too high

 Process Burst Time
 P1 53
 P2 17
 P3 68
 P4 24

• The Gantt chart is:  
 
 
 
 
 

• Typically, higher average turnaround than SJF, but better response.

RR with Time Quantum = 20

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Time Quantum and Context
Switch Time

Question: What considerations influence the choice of value  
for the quantum?

Turnaround Time Varies with the
Time Quantum

Multilevel Queue
• Ready queue is partitioned into separate queues:

– foreground (interactive)
– background (batch)

• Each queue has its own scheduling algorithm.
– foreground: RR
– background: FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR.
– 20% to background in FCFS .

Multilevel Queue Scheduling

Multilevel Feedback Queue
• A process can move between the various queues; aging

can be implemented this way.

• Multilevel-feedback-queue scheduler defined by the
following parameters:
– number of queues,
– scheduling algorithms for each queue,
– method used to determine when to upgrade a process,
– method used to determine when to demote a process,
– method used to determine which queue a process will enter

when that process needs service.

• Three queues:
– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

Example of Multilevel
Feedback Queue

Multilevel Feedback Queues

