

CPU Scheduling

CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the textbook *Operating Systems Concepts*, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the illustrations contained in this presentation come from this source.

Basic Concepts

Questions:

 P_0

 P_1

 P_2

 P_3

 P_4

- When does a process start competing for the CPU?
- How is the queue of ready processes organized?
- How much time does the system allow a process to use the CPU?
- Does the system allow for priorities and preemption?
- What does it mean to maximize the system's performance?

Basic Concepts

- You want to maximize **CPU utilization** through the use of multiprogramming.
- Each process repeatedly goes through cycles that alternate CPU execution (a CPU burst) and I/O wait (an I/O wait).
- Empirical evidence indicates that CPU-burst lengths have a distribution such that there is a large number of short bursts and a small number of long bursts.

Alternating Sequence of CPU and I/O Bursts

- Goal: maximize CPU utilization with multiprogramming
- Process execution consists of cycles of CPU execution and I/O wait
- A CPU burst is followed by an I/O burst
- The probability distribution of CPU bursts is an important concern

Histogram of CPU-burst Times

CPU Scheduler

- AKA short-term scheduler.
- Selects from among the processes in memory, which are ready queue and has the dispatcher give the CPU to one of them.
- The schedule needs to execute when a process:
 - I. Switches from running to waiting state,
 - 2. Switches from running to ready state,
 - 3. Switches from waiting to ready,
 - 4. Terminates.

Process State Transition Diagram

Preemptive Scheduling ?

- In cooperative or nonpreemptive scheduling, when a process takes the CPU, it keeps it until the process either enters waiting state or terminates.
- In preemptive scheduling, a process holding the CPU may lose it. Preemption causes context-switches, which introduce overhead. Preemption also calls for care when a process that loses the CPU is accessing data shared with another process or kernel data structures.

Dispatcher

- The **dispatcher** module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context,
 - switching to user mode,
 - jumping to the proper location in the user program to restart that program.
- The **dispatch latency** is the time it takes for the dispatcher to stop one process and start another running.

Scheduling Criteria

These are **performance** metrics such as:

- **CPU utilization** high is good; the system works best when the CPU is kept as busy as possible.
- Throughput the number of processes that complete their execution per time unit.
- Turnaround time amount of time to execute a particular process.
- Waiting time amount of time a process has been waiting in the ready queue.
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for timesharing environment).

It makes sense to look at the **averages** of these metrics.

Optimizing Performance

- Maximize CPU utilization
- Maximize throughput

- Minimize turnaround time
- Minimize waiting time
- Minimize response time

Scheduling Algorithms

Gantt Chart

A Gantt chart is **a type of bar chart** that illustrates a project schedule (circa 1910). Modern Gantt charts also show the dependency relationships between activities and current schedule status.

months	1	2	3	4	5	6	7	8	9	10
project phases										
Planning										
Design										
Coding										
Testing										
Delivery										

https://en.wikipedia.org/wiki/Gantt_chart

First-Come, First-Served (FCFS)

Process 7 1 1	<u>Burst Time</u>
Ρι	24
P ₂	3
P ₃	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The **Gantt Chart** for the schedule is:

- Waiting times: ?
- Average waiting time: ?

First-Come, First-Served (FCFS)

<u>Process</u>	<u>Burst Time</u>
Ρι	24
P ₂	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The **Gantt Chart** for the schedule is:

- Waiting times: $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27) / 3 = 17

FCFS

Suppose that the processes arrive in the order

 P_2 , P_3 , P_1

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case.
- Convoy effect: all process are stuck waiting until a long process terminates.

Shortest-Job-First (SJF)

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time.
- Two schemes:
 - Nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst.
 - Preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF).
- SJF is **optimal** gives minimum average waiting time for a given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

Non-Preemptive SJF

Process	Arrival Time	<u>Burst Time</u>
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Preemptive SJF

Process	Arrival Time	<u>Burst Time</u>
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3

Determining Length of the Next CPU-Burst

Sorry, no crystal ball. But... we can use some smart math!

Determining Length of the Next CPU-Burst

- We can only **estimate** the length.
- This can be done by using the length of previous CPU bursts, using exponential averaging:

 t_n = measured length of the n^{th} CPU burst

 T_n = estimated length of the n^{th} CPU burst

$$T_{n+1} = \alpha t_n + (1-\alpha) T_n$$

 α = weight value, where $0 \leq \alpha \leq 1$

Prediction of the Length of the Next CPU-Burst

Priority Scheduling

- A priority number (integer) is associated with each process.
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU-burst time.
- Problem: **Starvation** low priority processes may never execute.
- Solution: Aging as time progresses increase the priority of the process.

Round Robin (RR)

- Each process gets a small unit of CPU time (time *quantum*), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Performance:
 - -q too large \Rightarrow devolves into FCFS
 - q too small \Rightarrow excessive context switching; q must be large with respect to context switch, otherwise overhead is too high

RR with Time Quantum = 20

Process	<u>Burst Time</u>
P_1	53
P_2	17
P_3	68
P_4	24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response.

Time Quantum and Context Switch Time

Question: What considerations influence the choice of value for the quantum?

Turnaround Time Varies with the Time Quantum

Multilevel Queue

- Ready queue is partitioned into separate queues:
 - foreground (interactive)
 - background (batch)
- Each queue has its own scheduling algorithm.
 - foreground: RR
 - background: FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR.
 - 20% to background in FCFS .

Multilevel Queue Scheduling

highest priority system processes interactive processes interactive editing processes batch processes student processes lowest priority

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way.
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues,
 - scheduling algorithms for each queue,
 - method used to determine when to upgrade a process,
 - method used to determine when to demote a process,
 - method used to determine which queue a process will enter when that process needs service.

Example of Multilevel Feedback Queue

- Three queues:
 - $-Q_0$ time quantum 8 milliseconds
 - $Q_1 time$ quantum 16 milliseconds
 - $Q_2 FCFS$
- Scheduling
 - A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
 - At Q_1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2 .

Multilevel Feedback Queues

