Bucknell

UNIVERSITY

CPU Scheduling

CSCI 315 Operating Systems Design
Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many;, if
not all, the illustrations contained in this presentation come from this source.

Basic Concepts

Questions:

* When does a process start competing for the CPU?

* How is the queue of ready processes organized?

* How much time does the system allow a process to use the CPU!?
* Does the system allow for priorities and preemption?

* What does it mean to maximize the system’s performance?

Basic Concepts

* You want to maximize CPU utilization through
the use of multiprogramming.

* Each process repeatedly goes through cycles that
alternate CPU execution (a CPU burst) and I/O wait
(an I/O wait).

* Empirical evidence indicates that CPU-burst lengths
have a distribution such that there is a large number
of short bursts and a small number of long bursts.

Alternating Sequence of CPU and I/O Bursts

Goal: maximize CPU utilization with
multiprogramming

Process execution consists of cycles of
CPU execution and I/O wait

A CPU burst is followed by an 1/0
burst

The probability distribution of CPU
bursts is an important concern

Histogram of CPU-burst Times

frequency

160

140

120

—
o
(@)

(0]
o

0))
o

N
(@)

N
o

| |

16 24
burst duration (milliseconds)

32

40

CPU Scheduler

AKA short-term scheduler.

Selects from among the processes in memory, which are
ready queue and has the dispatcher give the CPU to one of
them.

The schedule needs to execute when a process:
Switches from running to waiting state,
Switches from running to ready state,
Switches from waiting to ready,

Terminates.

Process State Transition Diagram

admitted

scheduler dispatch .
terminated

exit

read runnin
y interrupt g

I/O or event completion @

I/O or event wait

Preemptive Scheduling ?

* |In cooperative or nonpreemptive scheduling, when a
process takes the CPU, it keeps it until the process either
enters waiting state or terminates.

* |n preemptive scheduling, a process holding the CPU
may lose it. Preemption causes context-switches, which
introduce overhead. Preemption also calls for care when a
process that loses the CPU is accessing data shared with
another process or kernel data structures.

Dispatcher

* The dispatcher module gives control of the CPU
to the process selected by the short-term scheduler;
this involves:

— switching context,

— switching to user mode,

— jumping to the proper location in the user program to
restart that program.
* The dispatch latency is the time it takes for the

dispatcher to stop one process and start another
running.

Scheduling Criteria

These are performance metrics such as:

CPU utilization — high is good; the system works best when the
CPU is kept as busy as possible.

Throughput — the number of processes that complete their
execution per time unit.

Turnaround time — amount of time to execute a particular
process.

Waiting time — amount of time a process has been waiting in the
ready queue.

Response time — amount of time it takes from when a request was
submitted until the first response is produced, hot output (for time-
sharing environment).

It makes sense to look at the averages of these metrics.

Optimizing Performance

4

e Minimize turnaround time

e Maximize CPU utilization

 Maximize throughput

v

* Minimize waiting time
* Minimize response time

Scheduling Algorithms

Gantt Chart

A Gantt chart is a type of bar chart that illustrates a
project schedule (circa 1910). Modern Gantt charts also

show the dependency relationships between activities and
current schedule status.

months|1 |2 |3 | 4 5 6 7 8 9 |10

project
phases

Planning
Design

Coding

Testing
elivery N

https://en.wikipedia.org/wiki/Gantt_chart

https://en.wikipedia.org/wiki/Gantt_chart

First-Come, First-Served (FCFS)

Process Burst Time
P, 24
P, 3
P, 3

Suppose that the processes arrive in the order:P,,P, ,P;
The Gantt Chart for the schedule is:

Waiting times: ?
Average waiting time: !

First-Come, First-Served (FCFS)

Process Burst Time
P, 24
P, 3
P, 3

Suppose that the processes arrive in the order:P,,P, ,P;
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

Waiting times: P, = 0;P, =24;P,=127
Average waiting time: (0+24+127)/3=17

FCFS

Suppose that the processes arrive in the order
P,,P;,P,

The Gantt chart for the schedule is:

P, P, P,

« Wiaiting time for P, = 6;P, = 0.P; =3
* Average waiting time: (6 +0 + 3)/3 =3
* Much better than previous case.

« Convoy effect: all process are stuck waiting until a long process
terminates.

Shortest-Job-First (SJF)

* Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest
time.

* Two schemes:

— Nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

— Preemptive — if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt. This
scheme is know as the Shortest-Remaining-Time=First (SRTF).

* SJF is optimal — gives minimum average waiting time for a
given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

« SJF (non-preemptive)

« Average waitingtime=(0+6+3+7)4=4

Preemptive SJF

Process Arrival Time Burst Time
0.0 7
2.0 4
4.0 1
5.0 4
SJF (preemptive)
P, P, | P P, P, P,
—— — |
0 11

Average waiting time =(9+1+0+2)/4=3

Determining Length of the
Next CPU-Burst

Sorry, no crystal ball.
But... we can use some smart math!

Determining Length of the
Next CPU-Burst

* We can only estimate the length.

* This can be done by using the length of previous
CPU bursts, using exponential averaging:

I» = measured length of the nth CPU burst

1 = estimated length of the nth CPU burst

Tn—l—] =atn+ (l'a) Tn

a = weight value,where 0 < a <1

Prediction of the Length of the
Next CPU-Burst

T, 10
sk
i 6
_/
4
o |
| | |

CPU burst (1) 6 4 6 4 13 13 13

"guess” (t) 10 8 6 6 5 9 11 12

Priority Scheduling

A priority number (integer) is associated with each process.

The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

— Preemptive

— Nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU-burst
time.

Problem: Starvation - low priority processes may never execute.

Solution: AgINg — as time progresses increase the priority of the
process.

Round Robin (RR)

Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU
time in chunks of at most g time units at once. No
process waits more than (n-1)q time units.

Performance:

— @ too large = devolves into FCFS

— g too small = excessive context switching; g must be large with

respect to context switch, otherwise overhead is too high

RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 638
P, 24

« The Gantt chart is:

P, | Py| Py | P, | P | Py | P, | P | Pyl Py

O 20 37 57 77 97 117 121 134 154 162

» Typically, higher average turnaround than SJF, but better response.

Time Quantum and Context
Switch Time

process time = 10 quantum context
switches
12 0
10
6 1
6 10
1 9

Question: What considerations influence the choice of value
for the quantum?

Turnaround Time Varies with the
Time Quantum

process time
12.5 | P p
12.0 | 5o 3
P, 1
£ 115} P, 7
-
S 11.0
S
E 105 |
=
® 10.0 |
©
o
> 95}
9.0 |

1 | 1 | 1 |
1 2 3 4 5 6 7
time quantum

Multilevel Queue

 Ready queue is partitioned into separate queues:
— foreground (interactive)
— background (batch)

« Each queue has its own scheduling algorithm.

— foreground: RR
— background: FCFS

« Scheduling must be done between the queues:

— Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

— Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR.

— 20% to background in FCFS .

Multilevel Queue Scheduling

highest priority

=

system processes

' =

interactive processes

v

interactive editing processes

batch processes

. =

student processes

Vv b

lowest priority

Multilevel Feedback Queue

« A process can move between the various queues; aging
can be implemented this waly.

« Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues,

scheduling algorithms for each queue,

method used to determine when to upgrade a process,
method used to determine when to demote a process,

method used to determine which queue a process will enter
when that process needs service.

Example of Multilevel
Feedback Queue

 Three queues:
— Q, — time quantum 8 milliseconds

— Q, —time quantum 16 milliseconds
- Q,—-FCFS

« Scheduling

— Anew job enters queue Q, which is served FCFS. When it gains
CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q,.

— At Q, job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and
moved to queue Q..

Multilevel Feedback Queues

o

>| gquantum = 8
g

f gquantum = 16
f FCFS g

