
CSCI 355 LAB #9 Spring 2007

Threads in Java

Objectives:

1. Explore communication between Java threads.

2. Explore coordination between Java threads.

3. Use of synchronized keyword in Java.

4. Use of wait and notify keywords in Java.

Reference: Chapter 23 in Java: How to Program by Deitel and Deitel, sixth edition.

Laboratory Assignment:

Exercise 1: Communication Between Threads
Communication between threads can be accomplished by passing values in a shared variables or a
shared data area. In C or C++, several threads could share a global variable. However, Java does not
have global variables. In Java, each thread’s local variables in methods are private to it because each
thread has its own private activation stack. However, threads are not given private copies of static
class variables or object instance variables. Therefore, you might ask what’s a good way to share a
variable in Java?

Copy the following file ˜cs355/Lab9/ProducerConsumer.java into one of your own direc-
tories. Note: this an example program we used in class.

Study the program and explain how the two threads share an object.

Compile and run the program many times to observe its behavior. This program should inhibit non-
deterministic behavior. If it doesn’t, try running on a loaded compute server like linuxcomp3.

What is non-deterministic behavior? Why is it usually undesirable behavior?

Whenever, two or more threads (or processes) share a variable (or data area), any computation on
the shared variable by one thread must be protected from interference by the other threads. Only
by careful analysis can we identify these critical regions and then use a synchronization primitive to
protect them. In Java, this synchronization primitive is a Hoare-style monitor associated with the
object. The monitor guarantees that at most one thread can execute within a critical region for that
object at any time.

Java provides the synchronized keyword for programmers to designate these critical regions for
an object. The keyword synchronized may be placed on a method of a class or surrounding a
block of code where in the latter case the programmer must specify the object. It is easy to do this
wrong!
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By analyzing the program and inserting synchronized keywords, fix the program. Where did you
insert them?

Exercise 2: Coordination Between Threads

In the previous exercise, we focused on the correctness of communication between threads. A second
important but different issue is the coordination between threads. Multiple threads need to alter their
behavior depending on what other threads are doing. If you are not careful, your multi-threaded
program will run with each thread acting like an independent-minded cat. Proper coordination is
difficult, i.e., like herding a dozen cats! If the programmer is not careful, a thread can starve, i.e.,
because of unfair coordination a thread never gets a chance to run. Also, a group of threads may
deadlock where all the threads in the group are waiting for an event which can only be produced by
one of the group.

A simple example of coordination is the interaction between a producer and a consumer. For example,
the consumer should wait if there is nothing to consume. And, the producer should wait if the shared
data structure becomes full.

Assume we desire the value of the shared variable n to always be 0, 1, 2, 3, or 4. Alter your solution
of exercise 1 to require the consumer to wait if n has a value of 0 and require the producer to wait if
n has 4. Use the wait() and notify()methods to accomplish this task. See Java text for help.

Exercise 3: Using the Runnable Interface

A class in Java can only extend one class, i.e, a class can only inherit from one class. Multiple
inheritance is not allowed. However, most of the benefits of multiple inheritance, can be achieved in
Java by implementing several interfaces.

If you have a class that already inherits a superclass by extends and you want threads, you must
use the Runnable interface.

Change the program of Exercise 2 to not use extends Thread. Create the two threads by using
the Runnable interface technique.

Hand In:

Hand in a copy of the listing of the Java code and sample output for Exercises 2 and 3. Also, hand in the
answers to the questions of Exercise 1.
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