
CSCI 355 LAB #11 Spring 2007

Java Applet Security

Objectives:
1. Learn how to write a Java Applet to run in a web browser.

2. Learn how to write Java Applets with Signed Certificates.

Laboratory Assignment:

Exercise 1: Java Applets

Copy the file TempConvert.java from ˜cs355/Lab11 on the linux machines.

Compile and run the program to see what it does. Note that the user can enter a temperature in either text
field.

For this exercise you are to convert this Java application to a Java Applet. Here is a cookbook procedure to
convert a Java application with a GUI to a Java Applet.

1. Add the import statement:

import javax.swing.JApplet;

2. Replace the extends JFrame with extends JApplet.

The original program creates a window with the JFrame class. The JFrame window is not needed
since the Applet program will display on an area of the web browser’s window.

3. Replace the line of the constructor’s header with public void init()

In an Applet you need to override the init() method of the JApplet superclass. This is where the
Applet will start.

4. Remove all code for initializing the JFrame window including the Container line.

5. Remove all occurrences of the object prefix and period “contentPane.” from the lines of code. Don’t
remove the lines just the prefix.

The container is now the Applet in question (this).

6. Remove the main method.

Since an Applet starts at the init() method, the main method is not needed.

7. Don’t call System.exit() method in an Applet.

Compile the Java code.

To test your new Applet use Java’s appletviewer. But first, create an html file, say TempConver.html, as
follows:

CSCI 355 Spring 2007 1 Lab #11



<!-- Assumes class files are in same directory as the .html file -->
<html>

<head>
<title>Temperature Conversion Applet</title>

</head>
<body>

<h2> Temperatures can be entered in either field.</h2>
<applet code = "TempConvert.class" width = "200" height = "80">
</applet>

</body>
</html>

Now run the appletviewer with the .html file.

appletviewer TempConver.html

It is best to always debug your Applet with appletviewer before trying the Applet in a web browser.

To run your Applet in a web browser, copy all three .class files and the .html file to your public_html
directory. Make your home directory, the public_html directory and the four files readable by the world.

The URL will be:

http://www.linux.bucknell.edu/˜loginName/TempConver.html

You should see a coffee cup as the Applet is dynamically loaded across the Internet. Note that Java Applets
must be turned on in the web browser and some browsers may be missing the required plugin.

Exercise 2: Java Applet Accessing Resource Outside Sandbox

To do the previous exercise you did not use any resources outside of Java’s Sandbox (protection domain),
therefore, you did not need to worry about Java’s Security Manager. In this exercise you will write an Applet
that requires a resource outside of Java’s Sandbox. Therefore, you must deal with Java’s Security Manager.

Copy your Applet from Exercise 1 and give it a new name, e.g., Ex2.java. You are to read a simple web
page www.eg.bucknell.edu/˜cs355/lab11.html and extract the third line (Great!) in the file.
See Lab 6 on how to open a socket and read a web page. Once you have read the proper line on the web
page you are to display the text in the Applet.

Change the grid layout in the Applet to allow a third row and add a new JLabel initialized to six blanks. Add
the new JLabel to the third row. When the user enters a Centigrade temperature, read the text from the web
page and display it as the new JLabel.

Try your Applet first using appletviewer. Since you are accessing a resource outside of Java’s Sandbox,
you will receive a “access denied” SecurityException when the Applet tries to open the socket.

You will need to create a policy file. Enter the following text in a file called lab11.policy.

// Java security policy file

CSCI 355 Spring 2007 2 Lab #11



grant {
// allow all socket operations on port 80 of www.eg.bucknell.edu
permission java.net.SocketPermission "www.eg.bucknell.edu:80",
"accept,listen,connect,resolve";

};

Now run Appletviewer using the policy file as follows:

appletviewer -J-Djava.security.policy=lab11.policy Ex2.html

It should run.

If you are having problems, try, as an intermediate step, copying the lab11.html file to your account on
linuxcomp3 (the web server’s host). When this version of your program works with appletviewer, then try
reading the file on the remote host www.eg.bucknell.edu.

Now try to run the Applet in the web browser. Since web browsers have a much stricter security policy, the
Applet should load but a small red “X” should appear to indicate that it has blocked the illegal access to the
socket. We fix this in the next exercise.

Exercise 3: Java Applet with Signed Certificates

We saw in the last exercise that untrusted remote code in a web browser can not access a socket on a
different host. Doing this is a dangerous security problem. As users browse the web, they don’t want web
sites secretly loading an Applet, then reading or writing files on their hard drive or opening sockets.

In this exercise, you will learn how to digitally sign the Applet with a certificate. To make the process secure,
there is a series of steps you must do.

Reference: “Java 2 Platform Security” by Ramesh Nagappan, Ray Lai, Christopher Steel. Date: Jan. 6,
2006, 30 pages. About one third of way through are good examples of signing an Applet.

http://www.informit.com/articles/printerfriendly.asp?p=433382&rl=1

The Java 2 platform has three key management tools to facilitate creating signed applets:

1. The keytool is used to create pairs of public and private keys, to import and display certificate chains,
to export certificates, and to generate X.509 v1 self-signed certificates.

2. The jarsigner tool is used to sign JAR files and also to verify the authenticity of the signature(s) of
signed JAR files.

3. The policytool is used to create and modify the security policy configuration files. We could have
used the policytool to create the above policy file but it was easier just to type it.

Step 1: Make a JAR file of the compiled class files.

Reference: http://www.eg.bucknell.edu/˜CS475/F06-S07/jar-file.html

SUN’s Java distribution has an archive tool called jar. The jar tool is a Java application that combines
multiple files into a single JAR archive file. The jar tool also compresses files. In addition, it allows
individual entries in a file to be signed with a digital signature so that their origin can be authenticated.

CSCI 355 Spring 2007 3 Lab #11



This is important for authors of Java applets that will be sent across a network. See Unix tool jarsigner for
signing jar files.

The syntax for the jar tool is almost identical to the syntax for the Unix tar command. See the jar manual
page.

% man jar

Use jar to archive all your Applet’s .class files into a .jar file.

% jar cvf myJar.jar *.class

It will tell you how much the files were deflated (compressed).

Step 2: Generate key pairs.

Using the keytool utility, create the key pair and self-signed certificate. The JAR file will be signed with the
creator’s private key and the signature is verified by the communicating peer of the JAR file with the public
key in the pair.

keytool -genkey -alias sign1 -keystore myStore -keypass myKpass -storepass mySpass

This keytool -genkey command generates a key pair that is identified by the alias (name) sign1. Subse-
quent keytool commands are required to use this alias and the key password (-keypass myKpass) to access
the private key in the generated pair. The generated key pair is stored in a keystore database called myS-
tore (-keystore myStore) in the current directory and is accessed with the mySpass password (-storepass
mySpass). The command also prompts the signer to input information about the certificate, such as name,
organization, location, and so forth.

If you run keytool -genkey move than once, change the -alias field, say to sign2 and so on.

Step 3: Sign the JAR file.

Using the jarsigner utility, sign the JAR file and verify the signature on the JAR files.

jarsigner -keystore myStore -storepass mySpass -keypass myKpass -signedjar SignedEx3.jar myJar.jar sign1

The -storepass mySpass and -keystore myStore options specify the keystore database and password where
the private key for signing the JAR file is stored. The -keypass myKpass option is the password to the
private key, SignedEx3.jar is the name of the signed JAR file, and sign1 is the alias (name) to the private
key. jarsigner extracts the certificate from the keystore and attaches it to the generated signature of the
signed JAR file.

Step 4: Modify the .html file.

Add to the .html file the archive attribute with the name of the signed JAR file.

<applet code="Ex3.class" archive="SignedEx3.jar" width=200 height=80>
</applet>

CSCI 355 Spring 2007 4 Lab #11



After the Applet loads, you should see a certificate asking whether you trust it or not. Select trust and the
Applet should run in the web browser now.

Hand In:

Please demonstrate the solutions of Exercises 1, 2 and 3 to your instructor.

CSCI 355 Spring 2007 5 Lab #11


