
CSCI 355 Lab #2 Spring 2007

More Java

Objectives:

1. To explore several Unix commands for displaying information about processes.

2. To explore some differences between Java and C++.

3. To write Java applications that use methods and classes.

Reference: Java: How to Program by Deitel and Deitel, sixth edition.

Preparation: Before lab read the following chapters in Deitel’s Java text: Chapters 6 Methods; 7 Arrays; 8
Classes; 9 Inheritance; 10 Polymorphism; and 29 Strings.

Bring the Java text to lab.

Laboratory Assignment:

The first part of the lab is to explore several Unix tools that deal with processes.

The rest of the lab is a collection of small exercises that point out some novel features in Java as well as
some pitfalls that some C++ programmers have in programming in Java.

1. Unix Processes:
In class, we talked about the importance of the notion of process to operating systems and distributed
systems. In a Linux shell window, type the ps Unix command to view the important processes you
are running. To see all the processes running on your machine, type ps -Af. I suggest you pipe the
output to more or less. Try piping ps -Af to grep logon-name. Who else is running on your
machine? Read about ps on its man page.

Make your Unix shell window as tall as possible and run the command top. top displays a table
of the top active processes ranked by CPU activity. Read top’s man page to understand the state
of each process. The table is updated evey few seconds and you exit by pressing Control-c. Remote
login to the compute server linuxcomp3 using the rlogin command and try top on linuxcomp3.
How many CPUs are currently being used on linuxcomp3?

2. Primitive Types Vs. Objects:
Java has primitive types, i. e., int, boolean, byte, char, float and double which have some subtle
differences from C++ (See Appendix D of Deitel’s Java Text for list of primitive types). For examples,
int is always 32 bits in Java whereas in C++ it depends on the computer platform. In Java, byte is 8
bits while char is 16 bits to store international characters. The use of the primitive types are cleaner
than in C++. For example, the if, and while statements require a boolean expression whereas in C++
one could use an int. Therefore, in Java you would say

while(true) {
}

CSCI 355 Spring 2007 1 Lab #2

instead of while(1).

Java makes major distinctions between primitive types and objects. Primitive types can be just de-
clared while objects such as arrays must use new. String is an exception – it is an object where you
do not need to use new. In Java you use new a lot more than in C++. For example, to declare an array
you must use new as follows:

int i;
int a[]; //in Java can’t specify array dimension in a type expression
a = new int[10];

i = 2;
a[i] = 7;

System.out.println("i is " + i + " a[i] is " + a[i]);

3. Passing Parameters to a Method:
Passing primitive types to a Java method (function in C++) is always done by call by value. There is
no call by reference mechanism such as the & symbol in C++. Objects always pass their reference to
the method (You can think of this as a pointer to the object.) Remember from last week that Java does
have pointers (references) but you can’t do arithmetic on references and there is no indirect operator
(*) in Java as in C++. See page 306 in Deitel’s Java text for discussion on passing arguments.

Write a Java application that allows the user to enter up to 20 integer grades into an array from
System.in. (See Marvin Solomon’s web pages if you need help. There is a link to them on the CS355
web pages.) Stop the loop by typing in -1. Your main method should call an Average method that
returns the average of the grades. Use the DecimalFormat class to print the average to 2 decimal
places. (For another way, see the new Java 1.5 feature System.out.printf() that is similar to C’s
printf.)

Hint: To make the Average method act like a free function in C++, make it static.

A static method is called by using Class-name.method-name() and not an object name. And all the
calls use the same state of instance variables. Be careful with the use of static keyword. Normally we
avoid its use except with main.

4. A Common Design Pattern for Java Applications:
Java has no top-level or global variables or functions. A Java program is always one or more classes.
A file may contain several classes but only one can be public and that class must have same name as
the file with .java extension. A class without a qualifier, e.g., the keyword public, is known only
to the current package. Only two things may appear before the first class construct - package and
import statements.

Because of this requirement that a Java program must be a set of classes, many programmers use a
common design pattern for a Java application as shown below:

class Lab2Part4 {

// Instance objects (data members in C++) traditionally after class.
// Used to communicate information across the class’s methods.
private int a;

// Constructor

CSCI 355 Spring 2007 2 Lab #2

Lab2Part4 ()
{

a = 7;
}

// Other methods

void Print()
{

System.out.println("a is " + a);
}

// main method
public static void main (String args [])
{

// Create a Lab2Part4 object called p
// which automatically calls the constructor.
Lab2Part4 p = new Lab2Part4();

// Call other methods as needed.
p.Print();

}
}

The idea here is that the main method creates an object of the class which automatically calls the
proper constructor then uses the object to call other methods. Notice how private instance variables
are used to communciate objects across methods. To C++ programmers this structures may seem a
little strange but it is very common in Java programs. You need to become familiar with it as you will
use it often.

Copy your Java application of Exercise 3 into a new file and rewrite it to use the above design pattern.
No longer make the Average method static.

5. Exceptions:
In many places, Java requires you to use exceptions such as when reading input with the method
readLine. Exceptions in Java are really handy and you should learn to be comfortable in using them.

Copy the program in Exercise 4 to a new file and add exception handling code to catch the exception
thrown by the Integer.parseInt(line) method when the user types in a non-integer like “cat”. Use the
Scanner class method nextLine(). Modify the code such that your program tells the user that what
they typed was not legal and to retype.

See Chapter 13 of the Deitel’s Java text for information on exceptions. See especially the table on
page 649 for the proper exception class to use.

6. Strings:
Strings are true objects in Java. Strings are different from the string class in C++ libraries in that
Java Strings are immutable, i. e., you can’t modify the value of a String. (See Chapter 29 of Deitel’s
Java text.) For example, that means you can’t alter the third character in a String. However, you can
reassign a String object a new value such as shown below:

String s1, s2;

CSCI 355 Spring 2007 3 Lab #2

s1 = "WOW";
s2 = "BOW";
s1 = s2 + " " + s1;

System.out.println(s1);

If you want to modify a string, use the StringBuffer class (See page 1364 of Deitel’s Java text).

The most common error with strings is when comparing them. The following is probably not what
the programmer intended.

String s1;

if(s1 == "WOW") // WRONG!
{

System.out.println(s1 + s2);
}

This compares the two references (pointers) for equality! With String use the equals method.

String s1;

if(s1.equals("WOW"))
{

System.out.println(s1 + s2);
}

Any Java object that can be compared for equality will have an equals method. And if you write your
own classes where you test for equality, you should name your method equals.

Copy your program of Exercise 5 to a new file and change the program to stop the loop when the user
types the word “done” instead of -1.

7. Using the Java Math Class Methods and the Java API:
Spend some time and focus on the Math class methods on page 235 to see what is available. On page
249 in Deitel’s Java text, you can learn how to use randum numbers in Java.

Bookmark in your browser the following URL for the Java 2, v 1.5 Application Programming Interface
(API):

http://java.sun.com/j2se/1.5/docs/api/index.html

You should learn how to extract useful information from the API.

8. Design Your Own Class:
In Java, all objects extend the class Object directly or indirectly. For example, if you define a new
class Exam as follows:

class Exam extends Object {

}

CSCI 355 Spring 2007 4 Lab #2

this is the same as leaving off “extends Object”. In Java’s jargon, we would say Object is the su-
perclass of Exam and Exam is the subclass of Object. By “extends” we mean that Exam inherits
methods and data instances from Object. (See page 421 and Chapter 9 of Deitel’s Java text for more
on inheritance.) One method that is part of the Object class and, therefore, inherited by all objects
is toString. (See page 424). If you use an object in a System.out.print method, Java automatically
calls the toString method associated with that object. Therefore, you should override toString when
you create your own classes.

You are to write a new Java application which allows the user to enter up to 20 student names and their
exam scores. The information will be stored in an array of a user-defined class Exam. This second
class will be placed in the file after the primary class. The primary class should have a method to read
in the information and a second method to print the information. Keep the Exam class as small as
possible, i. e., only methods that directly operate on the two data members name and score.

Your class Exam should override method toString to allow the printing of the name and score with
the following:

System.out.println(grades[i]);

You will need to make your toString method public.

In contrast to the int array of Exercise 2, this exercise involves an array of objects, i. e., Exam
objects. As in C++, using the new method to create an array of a class of objects only creates an array
of references. You still need to use the new method repeatedly to create each element of the array.

Hand in:
For Exercises 3, 4, 5, 6 and 8, combine all the Java listings and outputs from runs into one handin file
with a .java extension. Print using the a2ps command.

CSCI 355 Spring 2007 5 Lab #2

