
CSCI 355 Lab #3 Spring 2007

Developing GUIs in Java and Networking Tools

Objectives:

1. To explore GUIs in Java.

2. To write Java applications that have windows, simple graphics, GUI components, and menus.

3. To use Java listeners for event handling.

4. To explore several Unix networking tools.

Preparation: Before Lab read the following chapters in Java: How to Program by Deitel and Deitel, sixth
edition, Chapters 11 GUI Components: Part 1; 12 Graphics and Java 2D; 22 GUI Components: Part 2.

Laboratory Assignment:

This lab gets you started in writing window-based Java applications, i.e., GUIs. Also, the lab introduces
several Unix networking tools.

1. The Java API:
Java is a smaller and cleaner language than C++. Chapters 1-10, 13, and 29 of the Java text cover most
of the language except threads (Chapter 23). The reason why programmers like Java is the HUGE
standard Application Programming Interface (API). Sun’s API includes classes for developing Graph-
ical User Interfaces (GUIs), multimedia, networking, web-based computing, database connectivity,
distributed objects (RMI and CORBA), security and others. This is the fun part of programming in
Java!

Take a few minutes and explore Sun’s API for Java 2 (version 1.5) at URL:

http://java.sun.com/j2se/1.5/docs/api/index.html

Many other Java APIs are available from third party sources. You only need to search the Web with
“java api”.

2. A Window-based Java Application:
Below is the bare bones of a Java application that opens a window. The application extends JFrame
which is part of the swing API. See pages 515 and on of Java text.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Lab3Ex2 extends JFrame {

// A constructor
public Lab3Ex2() {

// super must be first line in constructor

CSCI 355 Spring 2007 1 Lab #3



super("Window for Lab3Ex2"); // title for window

// code to handle window event to allow proper "Close"
addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

}
);

// set size of window in pixels
setSize(600, 400);
// set window to visibile
setVisible(true);

}

public static void main(String args[]) {

// create object w and call the constructor
Lab3Ex2 w = new Lab3Ex2();

}
}

Since JFrame is the superclass to Lab3Ex2, the method super() passes the string to JFrame’s con-
structor. If you invoke a super() method, it MUST be the first line in a constructor.

Note that the structure of the program uses the common design pattern described in Lab 2. We told
you we would use it!

Don’t try to understand the addWindowListener code. It is needed for the window to close when the
user selects “Close” from the standard CDE menu. If you must know, see page 1011 of Java text.

Copy the code to a file, compile and run it.

Note the use of System.exit(0);. Even if you don’t have a window listener but use graphics in
your Java program, you should have a System.exit(0);. Without the System.exit(0);, the
window will close but the running java process will not quit.

The above skelton is an excellent start for any window-based Java application.

3. Adding GUI Components to the Window:
GUIs are built by adding GUI components to a window. Some possible components are text fields,
labels, buttons, check boxes and radio buttons. See Chapter 11 of Java text.

Copy the file from Exercise 2 to a new file and in the constructor set the layout for the window to
FlowLayout. To the window add two JLabel objects initialized to some text.

FlowLayout says to place the components one after the other until the components no longer fit across
the window then start a new row. Layouts in Java take a little getting use to. The idea is that when a
user resizes the window the components flow around to fit the new window size.

After displaying the two JLabel objects, adjust the size and shape of the window to see the behavior.

4. Adding JTextField and a Listener:
In this exercise we will add a listener to capture the text typed in a JTextField. Listeners are the way
Java’s API does event handling. See Chapter 11 of Java text.

CSCI 355 Spring 2007 2 Lab #3



Copy the file from Exercise 3 to a new file. Add a JTextField object of width of 20 characters to the
container. Create a new TextFieldHandler object and add the JTextField object to ActionListener.
See page 523 of Java text for information on JTextField. Create your own inner class to handle
the event and call it TextFieldHandler. Display what is typed in the JTextField object in the shell
window using System.out.println().

5. Adding a Menu:
Menus are an important part of GUIs. See section 22.4 starting on page 1011 of Java text.

Copy the file from Exercise 4 into a new file. Add a menu bar with the label “File” that has an “Exit”
item on it to quit the program.

When you run it, notice that the new menu bar shifts the JLabel and JTextField components down to
make room.

6. Adding Simple Graphics to the Window:
Drawing lines, rectangles, and circles is easy in Java but a bit tricker if you want to draw as well as
have other graphical components on the screen. See Chapter 12 of Java text.

Copy the file from Exercise 5 to a new file.

You should avoid the older approach of AWT which used the paint() method. We strongly urge you
to use the newer and much improved swing approach which uses paintComponent(). For example, if
you have a Java program with an animation, paintComponent() will refresh the screen automatically
for you while paint() does not.

To use paintComponent(), you must create a JPanel object. A JPanel creates a drawing area for
graphics. See pages 158-160 about JPanel. A good way to do this is to create a second file with
a class that extends the JPanel class, e.g., MyJPanel. Inside this extended class insert your paint-
Component() method. You will need to add super.paintComponent(g); as the first line of your
paintComponent() method.

Add lines in the paintComponent() method to display a blue rectangle and some red text. See Chapter
12 of Java text for details.

BEFORE you create an object of MyJPanel and add it to the window, you need to be careful with
your Java layout. In Java the default layout is BorderLayout, which has five regions, NORTH (top),
SOUTH (bottom), EAST (right), WEST (left) and CENTER. If you don’t specify when you add a
component, it goes in the CENTER. If you add two components to the CENTER, the second over-
writes the second. It is very easy to do this and find yourself cursing “Where in the Heck is my
drawing?”

Since JPanels and FlowLayout don’t seem to get along, change your program to use BorderLayout
and place the panel in the CENTER, and the two JLabels and JTextField to NORTH, EAST, and
SOUTH.

To create a line border around the panel, use the following line right after you create the panel.

panel.setBorder(BorderFactory.createLineBorder(Color.black));

When you run your paintComponent() method you override the paintComponent() method in the
superclass JPanel. JPanel automatically calls the paintComponent() method after creating the win-
dow and after any expose window event. Your Java window receives an expose window event when
the window is minimized (made an icon) and then maximized (icon opened). An expose event also

CSCI 355 Spring 2007 3 Lab #3



happens when the window is redrawn after another window has overlapped it. Try both of these
situations to see what happens.

7. Unix Network Tools: Name ______________________________________

Unix has many useful networking tools. Two are ping and traceroute. Read the man pages for both.

ping

Try the following to ping the host castor.

ping castor

Use Control-c to stop it. What does it tell you? ______________________________________
Use ping to send 10 packets of 1000 bytes each. (Read man page for help!)
How many bytes are actually sent? _______________________
And how long does it take in seconds? _______________________
What is the smallest packet that can be sent? ____________
And why? ______________________________________________________
What is the largest packet that can be sent? ____________
Ping Bucknell’s main web server (www.bucknell.edu).
What is the host name? ______________________________
What is the IP address? _____________________________
Ping www.acm.org For security reasons, many system administrators turn off ping on their
servers.

traceroute

Try the following to trace the route to the host castor.

traceroute castor

The command traceroute prints the intermediate computers along the path to a remote host.
Use it to trace the computers to www.acm.org. The stars mean the requests were blocked and
they timed out. Unfortuantely, traceroute is not allowed off campus by ISR.
Determine the host name of a workstation next to you in the lab. Trace the route to it.
And how long does it take in seconds? _____________________________
Note: Some network administrators disable protocols that traceroute and ping use to prevent
others from obtaining detailed information about a host. Since many Denial of Service (DoS)
attacks use traceroute, it is turned off.
Note: Both tools are part of the Windows Operating Systems, e.g. NT, but with different options.
Type ping or tracert at the command prompt for the options. Note shortened spelling of trac-
ert. For the command prompt select Programs->Accessories->Command Prompt
from Window’s Start menus.

Hand in

1. For Exercise 6, hand in the java code and a snapshot of the screen. Use the Linux tool xv to
take a snapshot of the window. Print the java code using a2ps.
2. Hand in this page with answers to the questions of Exercise 7.

CSCI 355 Spring 2007 4 Lab #3


